SERVIÇO NACIONAL DE AVISOS AGRÍCOLAS
Métodos de Previsão e Evolução dos Inimigos das Culturas
POMÓI DEAS
SERVIÇO NACIONAL DE AVISOS AGRÍCOLAS

Métodos de previsão e evolução dos inimigos das culturas

- POMÓIDEAS -

Coordenação:
Miriam Cavaco (DGPC)
Maria Helena Pinto (DRAVL)

Oeiras
2006
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introdução</td>
<td>1</td>
</tr>
<tr>
<td>2. Avisos para a cultura das pomóideas</td>
<td>3</td>
</tr>
<tr>
<td>3. Posto de observação biológica (POB)</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Caracterização do POB</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Observações a realizar no POB</td>
<td>5</td>
</tr>
<tr>
<td>3.2.1 Observações biológicas</td>
<td>5</td>
</tr>
<tr>
<td>3.2.2 Observações fenológicas</td>
<td>6</td>
</tr>
<tr>
<td>3.2.3 Observações meteorológicas</td>
<td>6</td>
</tr>
<tr>
<td>4. Pragas</td>
<td>7</td>
</tr>
<tr>
<td>4.1 Bichado (Cydia (= Laspeyresia) pomonella L.)</td>
<td>8</td>
</tr>
<tr>
<td>4.1.1 Morfologia</td>
<td>8</td>
</tr>
<tr>
<td>4.1.2 Bioecologia e estragos</td>
<td>8</td>
</tr>
<tr>
<td>4.1.3 Métodos de evolução</td>
<td>11</td>
</tr>
<tr>
<td>4.1.4 Estratégia a recomendar</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Aranhiço vermelho (Panonychus ulmi Koch)</td>
<td>17</td>
</tr>
<tr>
<td>4.2.1 Morfologia</td>
<td>17</td>
</tr>
<tr>
<td>4.2.2 Bioecologia e estragos</td>
<td>19</td>
</tr>
<tr>
<td>4.2.3 Métodos de evolução</td>
<td>20</td>
</tr>
<tr>
<td>4.2.4 Estratégia a recomendar</td>
<td>22</td>
</tr>
<tr>
<td>4.3 Cochonilha de São José (Quadraspidiotus perniciosus Comst.)</td>
<td>24</td>
</tr>
<tr>
<td>4.3.1 Morfologia</td>
<td>24</td>
</tr>
<tr>
<td>4.3.2 Bioecologia e estragos</td>
<td>24</td>
</tr>
<tr>
<td>4.3.3 Métodos de evolução</td>
<td>26</td>
</tr>
<tr>
<td>4.3.4 Estratégia a recomendar</td>
<td>28</td>
</tr>
<tr>
<td>4.4 Afídeo ou piolho cinzento (Dysaphis plantaginea Pass.)</td>
<td>29</td>
</tr>
<tr>
<td>4.4.1 Morfologia</td>
<td>29</td>
</tr>
<tr>
<td>4.4.2 Bioecologia e estragos</td>
<td>29</td>
</tr>
<tr>
<td>4.4.3 Métodos de evolução</td>
<td>31</td>
</tr>
<tr>
<td>4.4.4 Estratégia a recomendar</td>
<td>32</td>
</tr>
<tr>
<td>4.5 Afídeo ou piolho verde (Aphis pomi De Geer)</td>
<td>33</td>
</tr>
</tbody>
</table>
Índice

4.5.1. Morfologia ... 33
4.5.2. Bioecologia e estragos ... 33
4.5.3. Métodos de evolução ... 34
4.5.4. Estratégia a recomendar 35

4.6. Pulgão lanígero (Eriosoma lanigerum Hausm.) 36
 4.6.1. Morfologia ... 36
 4.6.2. Bioecologia e estragos ... 36
 4.6.3. Métodos de evolução ... 37
 4.6.4. Estratégia a recomendar 38

4.7. Mosca do mediterrâneo (Ceratitis capitata Wiedemann) 40
 4.5.1. Morfologia ... 40
 4.5.2. Bioecologia e estragos ... 40
 4.5.3. Métodos de evolução ... 41
 4.5.4. Estratégia a recomendar 43

4.8. Mineiras ... 44
 4.8.1. Morfologia ... 44
 4.8.2. Bioecologia e estragos ... 46
 4.8.3. Métodos de evolução ... 51
 4.8.4. Estratégia a recomendar 53

4.9. Psila (Cacopsylla pyr, L.) .. 54
 4.9.1. Morfologia ... 54
 4.9.2. Bioecologia e estragos ... 55
 4.9.3. Métodos de evolução ... 56
 4.9.4. Estratégia a recomendar 58

4.10. Cecidómia (Dasineura pyri Bouché) 59
 4.10.1. Morfologia ... 59
 4.10.2. Bioecologia e estragos ... 59
 4.10.3. Métodos de evolução ... 61
 4.10.4. Estratégia a recomendar 62

5. Doenças ... 62
 5.1. Pedrado (Venturia inaequalis (Cke)Wint. e Venturia pyrina Aderh) 63
5.1.1. Epidemiologia e sintomatologia ... 63
5.1.2. Métodos de previsão e evolução ... 66
5.1.3. Estratégia a recomendar ... 69
5.2. Cancro (Nectria galligena Bresad.) ... 70
5.2.1. Epidemiologia e sintomatologia ... 70
5.2.2. Métodos de previsão e evolução ... 72
5.2.3. Estratégia a recomendar ... 73

6. Bibliografia .. 74

ANEXOS
ANEXO I – Entidades e técnicos que participaram na elaboração do documento I
ANEXO II – Estados fenológicos das pomóideas .. II
ANEXO III – Fichas de registo utilizadas nos POB da cultura das pomóideas … IV
ANEXO IV – Origem das figuras .. XXVII
1. Introdução

O Serviço Nacional de Avisos Agrícolas (SNAA) é um serviço de âmbito nacional com incidência regional. Apresenta como base da sua estrutura, as Estações de Avisos (EA), sedeadas nas Direcções Regionais de Agricultura (Divisão de Protecção das Culturas) e recentemente também, as organizações de agricultores (OA) consideradas Estações de Avisos Privadas (EAP). Estas EAP emitem as circulares de avisos para regiões e/ou culturas versus inimigos não cobertos pelas EA oficiais. O SNAA é coordenado pelo serviço central, Direcção-Geral de Protecção das Culturas (DGPC).

Em 2002, foi aprovado o projecto “Modernização e Reforço da Capacidade do Serviço Nacional de Avisos Agrícolas (SNAA)” ao abrigo do Programa AGRO, medida 8, acção nº2 “Redução do Risco e dos Impactes Ambientais na Aplicação de Produtos Fitofarmacêuticos”, na componente nº 3, que foi decisivo para o SNAA uma vez que veio permitir melhorias significativas, num serviço que se debatia com falta de recursos, quer materiais, quer humanos. Foram considerados objectivos a nível central (DGPC) e a nível regional (Direcções Regionais de Agricultura) que se podem agrupar do seguinte modo:

- uniformização das Estações Meteorológicas Automáticas (EMA), e criação de uma rede nacional;
- criação de uma base de dados actual e histórica (dados meteorológicos, fenológicos e biológicos);
- alargamento dos Postos de Observação Biológica (POB) para áreas até então não cobertas;
- acompanhamento de novas culturas e de novos inimigos para culturas já cobertas;
- melhoria das condições de elaboração e expedição da Circular de Avisos Agrícolas;
- uniformização de procedimentos e metodologias entre todas as EA que emitem Avisos Agrícolas.

Um dos objectivos principais foi o estabelecimento de uma rede meteorológica, com o fim de criar uma base de dados meteorológicos, históricos e actuais, que nesta fase se encontra no site do SNAA, inserido no servidor do serviço coordenador (DGPC).

Dado que se pretende, no futuro, utilizar modelos matemáticos de previsão para os vários inimigos das culturas, foi necessário considerar os dados biológicos e fenológicos na base de
Métodos de previsão e evolução dos inimigos da cultura das pomóideas

dados anteriormente referida. As EA dispõem de um grande volume de dados biológicos e fenológicos recolhidos nos vários postos de observação biológica (POB) que cobrem, nas diferentes regiões, há muitos anos.

Constituída a base de dados foi necessário proceder à uniformização dos métodos e metodologias adoptados nas várias EA, que muitas vezes apresentam diferenças a nível regional. Surgiu assim, a necessidade de se elaborarem manuais por cultura onde se faz a uniformização dos vários métodos e metodologias utilizados no campo e em laboratório, para cada inimigo da cultura.

Considera-se importante que as metodologias seguidas sejam uniformizadas a nível nacional não só para que os dados recolhidos sejam comparáveis, mas também para que a estratégia de informação ao agricultor se apresente uniforme a nível nacional.

Estes manuais pretendem também ser úteis para os “novos parceiros” que sucessivamente vem integrando este serviço, quer a nível oficial, quer a nível privado.

O presente documento, relativo à cultura das pomóideas, tem como objectivo uniformizar as metodologias utilizadas nas várias EA públicas para monitorização das pragas e doenças da cultura. Está estruturado em seis capítulos, após uma breve introdução foi considerado um capítulo relativo à rede de EA que a nível nacional emitem avisos e informações/recomendações para os vários inimigos da cultura das pomóideas.

No capítulo três é efectuada a caracterização do POB, no qual são recolhidos os dados fenológicos, biológicos e meteorológicos, que servem de suporte à emissão das circulares de avisos.

No capítulo quatro e cinco, abordam-se os principais inimigos da cultura, fazendo-se para cada um deles uma referência sucinta à morfologia, bioecologia e estragos (para as pragas); epidemiologia e sintomatologia (para as doenças), dado que são assuntos exaustivamente tratados em bibliografia da especialidade. Em seguida apresentam-se os métodos e as metodologias utilizados para monitorização e previsão do risco de cada um destes inimigos, bem como o aconselhamento e meios de luta a recomendar nas circulares de avisos.

No capítulo seis é referenciada a toda a bibliografia consultada para a elaboração do presente documento.

Por último, em anexo, foram incluídas as fichas utilizadas pelos técnicos dos avisos para registo dos dados fenológicos e biológicos recolhidos nos POB (fichas de campo) e dos dados biológicos obtidos em laboratório e, ainda, outra informação complementar bem como a lista
das entidades e técnicos que participaram na elaboração do presente documento (Anexo I).

2. Avisos para a cultura das pomóideas

Em Portugal, são emitidos avisos para a cultura das pomóideas nas seguintes regiões: Entre Douro e Minho, na Beira Interior, na Beira Litoral e no Ribatejo e Oeste (Fig. 1).

![Fig. 1 - Rede de Estações de Avisos que emitem avisos e informações para a cultura das pomóideas (Original de Reis, 2006).]

A estratégia de luta recomendada pelas EA, anteriormente referidas, para o combate dos inimigos da cultura das pomóideas, tem como base o acompanhamento da evolução do ciclo biológico dos inimigos, em função das condições meteorológicas locais e da fenologia da cultura a proteger, e ainda com base na experiência dos técnicos.

Os técnicos das EA recolhem a informação que depois de tratada e analisada permite
determinar os períodos de risco para cada inimigo e emitem a circular de avisos na qual os agricultores são aconselhados a intervir ou não consoante a importância do risco.

Para o pedrado das pomóideas, é utilizada uma metodologia de previsão que foi testada e validada para as principais regiões pomícolas do país.

Para além das metodologias referidas no presente documento existem, modelos de previsão para algumas pragas e doenças das pomóideas. No site do SNAA (www.snaadgpc.min-agricultura.pt) foram incorporados modelos matemáticos de previsão para a cochonilha de S. José (Quadraspidiotus perniciosus Comst.) e para o bichado da fruta (Cydia pomonella L.). Outros modelos poderão ser considerados neste Site e ser utilizados pelas EA após a sua validação.

Os inimigos para os quais são emitidos avisos e informações técnicas, pelas EA, são os constantes nos capítulos quatro e cinco do presente documento.

3. Posto de observação biológica (POB)

Os técnicos das EA informam o agricultor relativamente à oportunidade dos tratamentos a realizar e produtos fitofarmacêuticos a utilizar, com ressalva para os autorizados em protecção integrada das pomóideas (Cavaco et al., 2006), e indicam os meios de luta alternativos, entre outra informação considerada útil para a prática de uma agricultura sustentável.

As preocupações actuais dos Avisos Agrícolas não incidem exclusivamente sobre as previsões de risco de ocorrência de ataques dos inimigos da cultura e recomendações de tratamentos fitossanitários. Actualmente a circular de avisos veicula mais informação útil para técnicos e agricultores, aproveitando-se deste modo as potencialidades deste serviço, que de acordo com Mário Gonçalves “...é a espinha dorsal da protecção fitossanitário de um País”.

As informações a prestar ao agricultor sobre a oportunidade dos tratamentos na cultura do castanheiro, apresentam como base as observações periódicas à evolução dos inimigos da cultura em parcelas designadas por postos de observação biológica (POB), sendo os registos efectuados em fichas elaboradas para o efeito (Anexo III).

O POB deve ser estabelecido numa parcela com uma localização estratégica no qual serão
efetuadas as observações biológicas e fenológicas. Na parcela do POB ou na sua proximidade deve ser instalada uma Estação Meteorológica (EM), que possa fornecer os dados climáticos que sejam considerados relevantes para determinação da oportunidade de tratamento.

3.1. Caracterização do POB

A prospecção e escolha da parcela para instalação do POB, deverá considerar determinados aspectos, dos quais se salientam os seguintes:

1º - uma área mínima de 0,5 a 1ha;

2º - a parcela deve ser representativa, do ponto de vista agro-ecológico, da zona sobre o qual venha exercer influência;

3º - a protecção fitossanitária, nomeadamente no que se refere à realização de tratamentos, deve ser efectuada de acordo com a luta química aconselhada;

4º - disponibilidade do proprietário e segurança de que segue com rigor as orientações dos técnicos dos Avisos.

3.2. Observações a realizar no POB

3.2.1. Observações biológicas

Os dados biológicos relativos aos estados e instares de desenvolvimento dos inimigos das culturas, estragos ou sintomatologia, devem ser orientados de acordo com a praga ou doença a monitorizar de modo a registar-se os indicadores biológicos que servem de base para a determinação da oportunidade de tratamento.

As observações devem ter uma periodicidade quinzenal nos períodos de menor risco e periodicidade semanal ou bi-semanal nos períodos de maior risco.

As metodologias e métodos de amostragem utilizados para cada um dos inimigos das pomóideas encontra-se referenciado nos capítulos quatro (pragas) e cinco (doenças).

Para realizar a observação visual deve percorrer-se a parcela em zig-zag entre duas linhas, selecionando uma árvore aleatoriamente de um lado e do outro da linha (Fig. 2), perfazendo o total de unidades estipuladas na metodologia de estimativa do risco, de modo a percorrer a totalidade da parcela.
As armadilhas devem ser instaladas sempre no cedo, para se poder detectar o início do voo e posteriormente o pico do voo. No caso de instalação de armadilhas sexuais a manutenção e mudança de feromona deve ser feita correctamente, de modo a não existirem dúvidas quanto à sua operacionalidade.

Caso se utilize armadilhas cromotrópicas adesivas, a cola deve ser espalhada em camada fina, de modo a não escorrer para o chão arrastando assim os insectos já capturados.

Quando for necessário efectuar observações em laboratório os órgãos vegetais colhidos no campo devem ser devidamente transportados em mala térmica até ao local onde se realizarão as observações.

3.2.2. Observações fenológicas

A observação dos estados fenológicos deve ser efectuada em 10 a 12 árvores, representativas do estado de desenvolvimento médio do pomar e devidamente marcadas, sendo os registos efectuados em fichas elaboradas para o efeito (Anexo III).

A periodicidade deve ser semanal e de acordo com escala que sirva de orientação.

3.2.3. Observações meteorológicas

Na parcela do POB ou na sua proximidade deve ser instalada uma Estação Meteorológica Automática (EMA) ou uma Estação Meteorológica Clássica (EMC), para recolha dos dados relativos à temperatura, humidade relativa, pluviosidade, velocidade e direcção do vento e outros considerados relevantes para determinação da oportunidade de tratamento. Na impossibilidade de colocar uma EM, deve ser utilizado um termohigrógrafo, para registo dos
dados climáticos (temperatura e humidade relativa).

4. Pragas

Nas pomóideas, consideram-se as seguintes espécies como as principais pragas a nível nacional:

Quadro 1 - Nome vulgar e científico das pragas da cultura das pomóideas consideradas do documento.

<table>
<thead>
<tr>
<th>Nome vulgar</th>
<th>Nome científico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaros</td>
<td></td>
</tr>
<tr>
<td>aranhiço vermelho</td>
<td>Panonychus ulmi Koch</td>
</tr>
<tr>
<td>Afídeos</td>
<td></td>
</tr>
<tr>
<td>afídeo ou piolho cinzento</td>
<td>Dysaphis plantaginea Pass.</td>
</tr>
<tr>
<td>afídeo ou piolho verde</td>
<td>Aphis pomi De Geer</td>
</tr>
<tr>
<td>pulgão lanígero</td>
<td>Eriosoma lanigerum Hausm.</td>
</tr>
<tr>
<td>Cochonilhas</td>
<td></td>
</tr>
<tr>
<td>cochonilha de São José</td>
<td>Quadraspidiotus perniciosus Comst.</td>
</tr>
<tr>
<td>Dípteros</td>
<td></td>
</tr>
<tr>
<td>mosca do mediterrâneo</td>
<td>Ceratitis capitata Wied.</td>
</tr>
<tr>
<td>cecidómia</td>
<td>Dasineura pyri Bouché</td>
</tr>
<tr>
<td>Lepidópteros</td>
<td></td>
</tr>
<tr>
<td>bichado da fruta</td>
<td>Cydia (=Laspeyresia) pomonella L.</td>
</tr>
<tr>
<td>mineiras</td>
<td>Lythocollethis blancardella F., Lythocollethis coryfoliella Haw., Leucoptera scitella Zell. e Lyoneta clerkella L.)</td>
</tr>
<tr>
<td>Homópteros</td>
<td></td>
</tr>
<tr>
<td>psila</td>
<td>Cacopsylla pyri L.</td>
</tr>
</tbody>
</table>

A referência constante no quadro anterior tem como base a necessidade de emissão de avisos e informações pelas diferentes EA a nível nacional.
4.1. Bichado (Cydia (=Laspeyresia) pomonella L.)

4.1.1. Morfologia

O **ovo** tem cerca de 1 mm diâmetro, é circular, aplanado, e de cor esbranquiçada no momento da postura. A **lagarta** neónta apresenta o corpo branco e a cabeça negra. No final do seu desenvolvimento, mede cerca de 18 a 20 mm de comprimento, a cabeça adquire uma coloração acastanhada e o corpo rosa pálido (López et al., 1992).

A **pupa** mede cerca de 10 mm, tem cor castanha e pode ser encontrada nas rugosidades da casca das árvores (Fig. 3) (ACTA, 1977).

O **adulto** tem cerca de 15 a 22 mm de comprimento e coloração acinzentada (Fig. 4). As asas anteriores têm uma coloração cinzenta-acastanhada e uma mancha oval castanha na extremidade (ACTA, 1977). As asasposteriores são triangulares, de cor acastanhada, com reflexos dourados. O tórax está revestido de escamas acinzentadas, enquanto que o abdômen tem uma coloração mais clara (López et al., 1992).

![Fig. 3 - Pupa formada dentro do casulo hibernante esbranquiçado (original de Oliveira, 2000)](image1)

![Fig. 4 - Insecto adulto do bichado (original de Oliveira, 2000).](image2)

4.1.2. Bioecologia e estragos

O bichado hiberna no estado de lagarta do quinto instar (lagarta hibernante), dentro de um casulo esbranquiçado, nas rugosidades da casca, fendas do tronco, ou em abrigos diversos no solo (ACTA, 1977) próximo do colo das árvores.

Os primeiros adultos emergem de meados de Março a finais de Abril, dependendo das regiões.

Os adultos têm atividade crepuscular. Para que ocorra o acasalamento e as posturas é
indispensável que a temperatura ao pôr-do-sol seja igual ou superior a 15ºC. O vento e a chuva dificultam os seus movimentos e actividade, nomeadamente o acasalamento e as posturas.

Na Primavera, logo que estas condições se verificam, as fêmeas depositam os ovos isoladamente nas folhas dos corimbos, perto dos frutos ou directamente sobre estes (Fig. 5).

Fig. 5 – Ovo de bichado recém posto (original de Oliveira, 1999).

Fig. 6 – Lagarta de bichado prestes a ecodir, (original de Oliveira, 1999).

Após a eclosão (Fig. 6), a lagarta inicia a penetração no fruto, preferencialmente nos seguintes locais: zona de contacto entre dois frutos, entre uma folha e um fruto, na fossa apical, junto ao pedúnculo ou numa rugosidade da superfície. Uma vez no interior do fruto, a lagarta escava uma galeria em direcção às sementes (seu alimento preferencial), efectuando previamente um percurso sub-epidérmico em espiral.

No final do seu desenvolvimento, a lagarta abandona o fruto e procura locais de refúgio onde constrói o casulo para pupar.

Quando as condições bioecológicas (factores bióticos e abióticos) são favoráveis ao seu desenvolvimento, sofre o processo de ninfose originando um insecto adulto. Quando estas condições são desfavoráveis, a lagarta entra em diapausa e só entra em ninfose no ano seguinte. A diapausa pode ocorrer em lagartas de qualquer geração.

Na maioria das regiões de Portugal Continental registam-se duas gerações anuais (Fig. 7), podendo, no entanto, verificar-se uma terceira geração em anos em que ocorrem condições climáticas favoráveis.
Os principais estragos provocados por esta praga são visíveis nos frutos através dos orifícios de entrada e saída das lagartas (Fig. 8). Por vezes, junto a estes orifícios estão os excrementos das lagartas. O bichado apenas provoca estragos durante a sua fase larvar, quando as lagartas se alimentam do interior dos frutos. Os frutos atacados pelo bichado apresentam danos extensos no seu interior e cicatrizes externas que conduzem à redução do seu valor comercial (Fig. 9).

A penetração da lagarta, na zona do endocarpo pode, ainda, provocar a queda dos frutos o que pode conduzir a quebras de produção.
4.1.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização do bichado nos POB.

a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Captura de lagartas da geração hibernante.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Relação entre o somatório de temperaturas e emergência dos adultos em insectário e eclosão dos primeiros ovos; Determinação da curva de voo; Captura de lagartas e pupas, em cintas armadilhas móveis, e emergência de adultos em caixas de emergência; Determinação da intensidade de ataque.

b) Método (s) de amostragem / monitorização

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- Captura de lagartas da geração hibernante

Entre Junho e Agosto do ano anterior, dependendo da região, devem colocar-se cintas armadilhas fixas de cartão canelado opaco (Fig. 10), se possível em pomar não tratado, de modo a capturar o máximo de lagartas hibernantes (cerca de 1000 lagartas).

![Fig. 10 - Colocação das cintas armadilhas fixas de cartão canelado (original de Oliveira, 2000).](image)

Em Outubro, retiram-se as cintas dos troncos e, após contagem das lagartas hibernantes, estas são colocadas em rolos de papel canelado, que são inseridos em insectário (Fig. 11), onde permanecem todo o Inverno.
• Relação entre o somatório de temperaturas e emergência dos adultos em insectário e eclosão dos primeiros ovos

Os técnicos das EA determinam o somatório da temperatura com base nas temperaturas médias dos dias superiores ao zero de desenvolvimento da praga, que para o bichado são 10ºC.

Com base no somatório das temperaturas médias diárias, sabe-se que a emergência dos adultos ocorre por volta dos 90ºC de temperatura média acumulada acima dos 10ºC (Quadro 2) e, que nos três a quatro primeiros dias, os primeiros adultos a emergir são machos. Este fenômeno designa-se por protandria. Há necessidade de separar os machos das fêmeas, o que é feito através da observação da parte terminal do abdómen (Figs. 12 e 13), com o objectivo de colocar machos e fêmeas nas mangas de postura e assim garantir que existe o acasalamento e a postura de ovos.

Quadro 2 – Valores do somatório de temperaturas médias diárias determinadas para as várias fases de desenvolvimento de Cydia pomonella, em Portugal (Beira Interior) e na Suíça.

<table>
<thead>
<tr>
<th>Fase de desenvolvimento da praga</th>
<th>Valores validados para a região da Beira Interior</th>
<th>Valores validados para a Suíça</th>
</tr>
</thead>
<tbody>
<tr>
<td>Início de voo</td>
<td>90ºC</td>
<td>80ºC</td>
</tr>
<tr>
<td>Início das penetrações</td>
<td>200ºC</td>
<td>220-250ºC</td>
</tr>
<tr>
<td>Pico de voo da 1ª geração</td>
<td>340ºC</td>
<td>350-380ºC</td>
</tr>
<tr>
<td>Primeiras larvas a saírem dos frutos</td>
<td>470ºC</td>
<td>470ºC</td>
</tr>
<tr>
<td>Fim da 1ª geração, início da 2ª</td>
<td>700ºC</td>
<td>700ºC</td>
</tr>
</tbody>
</table>
Os primeiros casais a emergir em insectário são transferidos para uma manga de postura, colocada num ramo com corimbos (Fig. 14). As observações das posturas devem ser iniciadas quando as temperaturas crepusculares são superiores a 15ºC e a humidade relativa é igual ou superior a 65%, o que ocorre normalmente entre as 18-22 horas. A eclosão dos primeiros ovos ocorre quando se atinge os 90ºC de temperatura média acumulada acima dos 10ºC. Após a eclosão ocorrem as perfurações.

Determinação da curva de voo

As armadilhas sexuais devem ser instaladas nos POB antes do aparecimento dos primeiros adultos, na zona média da copa da árvore, e no sentido dos ventos dominantes para que o odor seja espalhado para o interior do pomar (Figs. 15 e 16). É colocada uma armadilha sexual por 3-4 ha e a contagem dos adultos deve ser efectuada duas a três vezes por semana. A título de orientação, para as primeiras capturas, utiliza-se um indicador de três adultos capturados, na armadilha sexual, por semana.
A determinação da curva de voo, por si só, não é suficiente para a monitorização do desenvolvimento do bichado e a estimativa dos estragos, dado que nem sempre se verifica uma relação directa entre as capturas e os estragos provocados. Deste modo, torna-se necessário efectuar a observação de posturas e penetrações nos frutos.

- Determinação da intensidade de ataque

A observação de posturas deve ser feita através da observação visual de 100 corimbos, folhas e frutos, ao acaso. Estas observações devem ser iniciadas quando as condições são favoráveis ao desenvolvimento do bichado. Dever-se-á em atenção às primeiras posturas.

A observação das penetrações deve ser realizada através da observação visual de 1000 frutos ao acaso, à razão de 20 frutos por árvore, em 50 árvores (30 no interior do pomar e 20 na bordadura).

É muito importante identificar as primeiras posturas e/ou penetrações para que a emissão dos primeiros avisos seja oportuna.

A avaliação do grau de ataque, em parcelas não tratadas, é feita através da observação visual dos frutos bichados caídos no chão ao longo do período de evolução da praga, e dos frutos bichados na árvore (seis árvores) na altura da colheita. A partir das primeiras penetrações nos frutos, deve limpar-se as caldeiras de toda a fruta caída após a queda, e registar, semanalmente, o número de frutos bichados caídos.

A observação de frutos na altura da colheita permite também avaliar a eficácia dos meios de protecção utilizados no combate desta praga.
• **Captura de lagartas e pupas, em cintas armadilhas móveis, e emergência de adultos em caixas de emergência**

Às primeiras penetrações, colocar cintas armadilhas móveis de cartão canelado translúcido, a envolver o tronco das árvores, e observar semanalmente (Fig. 17). Estas observações vão permitir determinar os níveis populacionais de lagartas e pupas na presente geração, e avaliar o risco potencial da geração seguinte.

As lagartas são retiradas das cintas armadilhas móveis e colocadas em caixas de emergência, para acompanhar a ninfose e determinar o início do novo voo dos adultos (Fig. 18). As caixas devem ser colocadas por baixo da copa das árvores em condições naturais. Este método permite determinar o início do segundo voo, e verificar se existe sobreposição com o primeiro voo.

Fig. 17 - Colocação da cinta móvel (original de Oliveira, 2000).

Fig. 18 - Caixa de emergência (original de Oliveira, 2000).

c) **Observações, contagens e registos**

O Quadro 3 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do bichado das pomóideas.

Quadro 3 - Métodos de amostragem e registos a efectuar para o acompanhamento do bichado.

<table>
<thead>
<tr>
<th>M étodo de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armadilha sexual</td>
<td>Número de machos adultos capturados/ ha/ semana</td>
</tr>
<tr>
<td>Observação visual de frutos</td>
<td>Percentagem (%) de frutos atacados</td>
</tr>
<tr>
<td>Cintas armadilhas fixas</td>
<td>Número de lagartas hibernantes capturadas</td>
</tr>
<tr>
<td>Colocação de lagartas hibernantes</td>
<td>Número de adultos que emergem</td>
</tr>
<tr>
<td>em insectário</td>
<td></td>
</tr>
<tr>
<td>Colocação de adultos em mangas de</td>
<td>Número de ovos total observado e número de ovos que eclodem</td>
</tr>
<tr>
<td>postura</td>
<td></td>
</tr>
<tr>
<td>Primeira geração</td>
<td></td>
</tr>
</tbody>
</table>
4.1.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate ao bichado, podem ser recomendados os seguintes meios de luta:

- **luta biotécnica** - método de confusão sexual e aplicação de produtos fitofarmacêuticos reguladores do crescimento de insetos;

- **luta química** - utilização de produtos fitofarmacêuticos homologados para este inimigo, com referência pelos aconselhados em protecção integrada na cultura das pomóideas (Cavaco et al., 2006).

b) Informação relevante para a emissão do aviso

Sempre que for feita referência ao nível económico de ataque para este inimigo, no aviso, esta deverá ser efectuada do seguinte modo:

- **1ª geração**: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar a existência deste inimigo: 2 a 3 machos/ha/semana (maceira) e 4 machos/ha/semana (pereira)), assim como, dos estragos por ele provocados. Para o efeito deve observar 100 corimbos (5 corimbos em 20 árvores) e deve proceder a um tratamento fitossanitário, às primeiras posturas ou observações.”

- **2ª e 3ª gerações**: “Foram registados níveis populacionais considerados importantes

1 Caso tenha sido instalado no pomar uma armadilha sexual, deve recomendar-se a observação deste dispositivo.
Métodos de previsão e evolução dos inimigos da cultura das pomóideas

nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar a existência deste inimigo: (2 a 3 machos/ha/semana (macieira) e 3 a 4 machos/ha/semana (pereira)), assim como, dos estragos por ele provocados. Para o efeito deve observar 1000 frutos (20 frutos em 50 árvores), se obter entre 0,5 e 1% de frutos atacados, deve proceder a um tratamento fitossanitário.”

No sentido de se incentivar o recurso à confusão sexual (luta biotécnica) deve informar-se o agricultor do início do voo e do momento em que os níveis populacionais são baixos.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada. A aplicação de produtos fitofarmacêuticos ovicidas deve ser realizada às primeiras posturas, enquanto que a aplicação de larvicidas deve ser efectuada às primeiras penetrações.

4.2. Aranhiço vermelho (Panonychus ulmi Koch)

O aranhiço vermelho é considerado, entre os ácaros de interesse agrícola, aquele que causa maiores problemas fitossanitários nos nossos pomares, em especial na cultura da macieira.

4.2.1. Morfologia

Durante o seu ciclo de vida, o aranhiço vermelho apresenta as fases de ovo, larva, ninfa e adulto.

Existem dois tipos de ovos, os de Inverno, a partir dos quais ecodem as primeiras gerações anuais, e de Verão, a partir dos quais surgem as restantes gerações (Rodrigues, 2005). Os ovos de Verão são esféricos, ligeiramente achatados, e estriados num dos pólos, com uma arista central e apresentam uma cor rosada a vermelha viva, medindo cerca de 0,1 mm de diâmetro. Os ovos de Inverno são semelhantes aos de Verão na forma e cor, contudo apresentam dimensões ligeiramente superiores (Fig. 19).

As larvas são avermelhadas, de forma globosa, com três pares de patas e cerca de 0,3 a 0,4 mm de comprimento, e não possuem sedas dorsais (Fig. 20) (López et al., 1992).
As ninfas possuem quatro pares de patas, e sedas dorsais mais ou menos desenvolvidas, segundo o seu estado de desenvolvimento (Fig. 21). As protoninfas (primeiro estado ninfal), têm forma globosa semelhante à das larvas. A deutoninha (segundo estado ninfal), tem uma forma mais alargada e dimensões ligeiramente superiores à anterior, mas inferiores ao adulto (López et al., 1992).

Os adultos apresentam uma clara diferenciação sexual. As fêmeas, com cerca de 0,7 mm de comprimento e cor vermelho-carmim ou castanho avermelhado. São arredondadas, de dorso côncavo e com fortes pêlos dorsais inseridos em protuberâncias redondas e esbranquiçadas (Fig. 22). Os machos, mais pequenos (cerca de 0,5 mm de comprimento) e mais estreitos do que as fêmeas, são de cor vermelho esverdeado, com o corpo em forma de pêra e com protuberâncias dorsais menos evidentes (Fig. 23).
4.2.2. Bioecologia e estragos

Hiberna no estado de ovo, preferencialmente em madeira de dois ou mais anos, junto da inserção de gomos florais, esporões, fendas e, em geral, nas zonas que apresentam rugosidade ou pequenas gretas (Rodrigues, 2005).

Na Primavera, a eclosão dos ovos ocorre desde finais de Março até princípios de Maio, dando origem às larvas da primeira geração (López et al., 1992).

Após a eclosão, as larvas movem-se para a folhagem jovem, começando de imediato a alimentar-se (Rodrigues, 2005). Durante a Primavera preferem as folhas do terço inferior das árvores, enquanto que no Verão preferem as do terço médio da árvore (López et al., 1992).

As fêmeas, ao atingirem a fase adulta e, uma vez fecundadas, fazem a postura dos ovos de Verão, a partir da qual se irão desenvolver as sucessivas gerações (Fig. 24). Os ovos de Verão são preferencialmente depositados na página inferior das folhas, agrupados ao longo da nervura central e das ramificações (López et al., 1992). Em caso de forte infestação, a postura também pode também ocorrer na página superior. Cada fêmea deposita por ano cerca de 30 a 50 ovos (Rodrigues, 2005).

As fêmeas fazem a postura dos ovos de Inverno, de meados de Agosto até princípios de Outubro. O fotoperíodo, a temperatura e o estado vegetativo da planta são os factores que desencadeiam este processo (López et al., 1992).

Para Portugal, estima-se que ocorram entre seis a 10 gerações por ano (Sobreiro, 1993), dependendo das regiões e das condições climáticas (temperatura e humidade relativa).
Os principais estragos provocados por esta praga resultam da sua alimentação, uma vez que todos os estados móveis (larvas, ninhas e adultos) são dotados de armadura bucal picadora-sugadora. Ao alimentarem-se, inserem os seus estiletes nas folhas e ramos para sugarem o conteúdo das células, o que permite a entrada de ar, e acaba por provocar o colapso e morte dos tecidos vegetais.

No início, as folhas atacadas adquirem um tom pálido prateado, que se torna, com a morte das células, numa cor castanho bronzeada.

Para além do esgotamento da seiva, toda a actividade fisiológica da planta é afectada. Podem ocorrer desfoliações e queda de frutos, afectando o armazenamento nutritivo e provocando o enfraquecimento das árvores.

4.2.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização do aranhiço vermelho nos POB.

a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observação:
- **Verão** - Determinação do pico das eclosões; Determinação da intensidade de ataque
- **Inverno** - Determinação do risco potencial de ataque; Preparação do material para observação das eclosões
b) Métodos de amostragem / monitorização

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- **Determinação do risco potencial de ataque**

Para a determinação do risco potencial de ataque, recorre-se à observação visual de 120 gomos, à razão de 2 gomos por rebento e de 2 rebentos por árvore em 30 árvores, em madeira de dois anos, para determinação do número de ovos.

- **Preparação do material para observação das eclosões**

Recolhem-se ramos de dois anos com posturas de Inverno, que posteriormente são cortados em segmentos de aproximadamente 20 cm e observados à lupa binocular, para contagem do número de ovos existente. De seguida, são colocados em tabuinhas e rodeados por uma camada de vaselina. As tabuinhas são penduradas no pomar com a face que suporta o ramo voltada para baixo (Fig. 25).

![Fig. 25 - Tabuinha de eclosão de ácaros (original de Pinto, 2004).](image)

- **Determinação do pico das eclosões**

A observação das tabuinhas é feita desde o fim de Fevereiro até meados de Março, para detecção das primeiras eclosões e elaboração da respectiva curva de eclosões. Pretende-se determinar o pico máximo de eclosões com o objectivo de se aconselhar a utilização atempada de um produto fitofarmacêutico larvicida.

- **Determinação da intensidade de ataque**

Na Primavera, a determinação da intensidade de ataque da praga (estado fenológico F-J) é realizada através da observação visual de 100 folhas, duas folhas em 50 árvores ao acaso, no terço inferior do ramo, para detectar o nível de infestação da parcela. A observação visual
deverá ser realizada com lupa (de bolso ou cabeça).

No início do Verão (Junho/Julho) são igualmente observadas 100 folhas, duas folhas em 50 árvores ao acaso, mas no terço médio do ramo, para detecção de folhas ocupadas com formas móveis. A partir de Agosto, fazem-se as observações no mesmo número de folhas, mas no terço superior do ramo.

c) Observações, contagens e registos

O Quadro 4 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do aranhiço vermelho.

Quadro 4 – Métodos de amostragem e registos a efectuar para o acompanhamento do aranhiço vermelho.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação visual de gomos</td>
<td>Número de ovos por amostra</td>
</tr>
<tr>
<td>Colocação de tabuinhas de eclosão no pomar</td>
<td>Número de ovos eclodidos</td>
</tr>
<tr>
<td>Observação visual de folhas</td>
<td>Percentagem (%) de folhas ocupadas*</td>
</tr>
</tbody>
</table>

Observação: *Considera-se folha ocupada, quando esta apresentar pelo menos uma forma móvel.

4.2.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate ao aranhiço vermelho, podem ser recomendados os seguintes meios de luta:

- **luta biológica** - baseia-se na limitação natural da praga através da presença de ácaros ou insectos auxiliares predadores do *P. ulmi* nos pomares. Destaca-se a acção dos ácaros fitoseídeos no controlo da praga;

- **luta cultural** - tendo em vista a redução dos níveis populacionais podem ser recomendadas no aviso as seguintes práticas culturais:
 - evitar o excesso de adubações azotadas,
 - evitar podas severas e regas abundantes.

- **luta química** - baseia-se na utilização de acaricidas homologados para este inimigo, com referência aos aconselhados em protecção integrada das pomóideas (Cavaco et al., 2006).
b) Informação relevante para a emissão do aviso

Devem-se alertar os agricultores para observarem os auxiliares mais importantes na limitação natural do *P. ulmi*, existentes no pomar, como por exemplo, ácaros fitoseídeos e larvas de insetos predadores, nomeadamente coccinéideos (Figs. 26 e 27).

![Fig. 26 - Predação de *P. ulmi* por ácaros fitoseídeos (original de Garcia-Marí, 2005).](image1)

![Fig. 27 - Predação de *P. ulmi* por larva de coccinéideos (original de Garcia-Marí, 2005).](image2)

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 folhas (duas folhas por árvore, em 50 árvores escolhidas ao acaso), para determinar a percentagem de folhas ocupadas. Considera-se folha ocupada, quando apresenta pelo menos uma forma móvel.

Deve efectuar um tratamento fitossanitário, quando registar os seguintes valores:

- *Macieira*: 50 – 65% folhas ocupadas no estado F-J; 50 – 75% folhas ocupadas em Junho/Julho e 40 – 45% folhas ocupadas desde Agosto;

- *Pereira*: 40% folhas ocupadas no estado F-J; 50% folhas ocupadas em Junho/Julho e 30% folhas ocupadas desde Agosto.”

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

2 Na Primavera deve ser recomendada a observação de folhas no terço inferior dos ramos, no início do Verão do terço médio e a partir de Agosto do terço superior dos mesmos.
4.3. Cochonilha de São José (Quadraspidiotus perniciosus Comst.)

4.3.1. Morfologia

A cochonilha de S. José é um homóptero com um marcado dimorfismo sexual, que passa pelos seguintes estados: ninfa do primeiro instar (N_1), ninfa de segundo instar (N_2), pré-pupa, pupa e adulto. Os estados de pré-pupa e pupa são exclusivos dos machos e caracterizam-se pela cessação da actividade alimentar (Sequeira, 1996).

As ninfas recém eclo ditas são o único estado com poder de dispersão, uma vez que são móveis. Têm cor amarela, um par de antenas e três pares de patas. O corpo tem forma oval e mede entre 0,2 a 0,3 mm de comprimento (Comelles et al., 1989). Após a fixação, as N_1 iniciam a segregação do escudo, constituído inicialmente por filamentos de cor branca. Com a continuação da sua formação, o escudo adquire coloração cinzenta escura com uma zona mais clara nos anéis centrais (Sequeira, 1996). A ninfa de segundo instar apresenta dimensões ligeiramente superiores à anterior (López et al., 1992). No primeiro e segundo instares o dimorfismo sexual é pouco evidente, acentuando-se nos restantes estados (Sequeira, 1996).

No estado de pré-pupa e pupa, o escudo dos machos começa a alargar-se para uma das extremidades, adquirindo uma forma elíptica. No seu interior formam-se as patas, antenas e asas (López et al., 1992).

O macho adulto é alado e mede aproximadamente 1 mm. Apresenta uma nítida separação da cabeça, tórax e abdómen.

A fêmea adulta é áperta, ápoda e apresenta fusão completa da cabeça, tórax e abdómen (Sequeira, 1996). O escudo das fêmeas adultas mantém a sua forma circular (López et al., 1992).

4.3.2. Bioecologia e estragos

A cochonilha de S. José passa o Inverno, essencialmente, no estado de ninfa do primeiro instar, ou menos frequentemente no segundo instar e nos estados de fêmea adulta (Guimarães, 1993).

Em Fevereiro, as ninfas do primeiro instar reiniciam o seu desenvolvimento, evoluindo gradualmente para o estado de ninfa do segundo instar (Sequeira, 1996). Durante o mês de
Março, o macho da geração hibernante, emerge do escudo e procura fêmeas receptivas para fecundar.

No interior das fêmeas fecundadas vão desenvolver-se as ninhas, que são móveis. Ao eclodir permanecem umas horas debaixo do escudo, emergem e dirigem-se para as partes mais altas das árvores. Vagueiam entre 24 a 48 horas até que encontrem um lugar apropriado para se fixarem, onde inserem o estáte para se imobilizar definitivamente e começam a alimentar-se (López et al., 1992). A partir deste momento, segrega uma substância cerosa que consolida em contacto com o ar, iniciando assim a formação do escudo. É nesta fase inicial, enquanto o escudo não está formado, que o inseto é mais suscetível aos produtos fitofarmacêuticos (Guimarães, 1993). Interessa determinar o momento da eclosão das ninhas, sobre as quais devem incidir os tratamentos. O escudo que é branco de início, toma depois uma cor acinzentada e mais tarde negra (Guimarães, 1993).

Os adultos da primeira geração surgem a partir de meados de Junho, sendo de prever o início da segunda geração em finais de Julho. Esta geração termina, em geral, no início de Outubro com a eclosão das ninhas móveis da terceira geração (Sequeira, 1996).

Em Portugal, o número de gerações varia, normalmente, entre duas e quatro, podendo iniciar-se uma quinta geração na região do Algarve (Guimarães, 1993). Na região do Oeste verifica-se o desenvolvimento de duas gerações completas e de uma terceira incompleta (Sequeira, 1996). Na região da Beira Litoral registam-se apenas duas gerações por ano.

A praga apresenta-se durante a maior parte do ciclo biológico imóvel e protegida por um escudo acinzentado. A forma alada verifica-se apenas nos machos, pelo que é possível o acompanhamento do voo através de armadilha sexual.

Na figura 28 pode observar-se a representação esquemática do ciclo biológico da cochinilha de S. José, para a região da Beira Litoral.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adulto</td>
<td></td>
</tr>
<tr>
<td>Pré-pupa e pupa</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td></td>
</tr>
<tr>
<td>Ninfas móveis</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 28 - Ciclo de vida da Cochinilha de São José (original dos autores).

A cochinilha ataca ramos, frutos e folhas. Nas pomóideas prefere os frutos em relação a
outros órgãos da planta, nomeadamente as folhas (Guimarães, 1993).

O insecto para se alimentar insere o estilete na árvore ou fruto, segregando saliva tóxica que enrijece os tecidos, tornando-os avermelhados. Os sintomas mais evidentes do ataque desta praga são as manchas vermelhas na região sub-cortical. Os locais preferenciais de fixação nos hospedeiros são as pequenas depressões dos troncos, as zonas de crescimento dos ramos, as nervuras das folhas e as fossas apical e basal dos frutos (Figs. 29 e 30).

4.3.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização da cochonilha de S. José nos POB.

a) Época e periodicidade de realização das observações

|------|------|------|------|------|------|------|------|------|------|------|------|

Observação:
- Primavera / Verão - Determinação da curva de voo; Elosão dos ovos e emergência das ninfas móveis; Avaliação da intensidade de ataque
- Inverno - Detecção da praga

b) Método (s) de amostragem/monitorização

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:
• **Detecção da praga**

Na altura da poda pode ser detectada a presença da praga, principalmente nos ramos localizados na parte superior da copa.

• **Determinação da curva de voo**

No início da Primavera, são instaladas armadilhas sexuais nos POB, para determinação do início, pico e fim do voo dos machos (Fig. 31).

![Fig. 31 - Armadilha sexual com feromona de cochonilha de S. José (original de Batista, 2001).](image)

• **Eclosão dos ovos e emergência das ninfas móveis**

Os técnicos das EA determinam o somatório da temperatura com base nas temperaturas médias diárias superiores ao zero de desenvolvimento da praga que, para a cochonilha de S. José é 7,3ºC.

Com base no somatório das temperaturas, determinado desde 1 de Janeiro de cada ano, sabe-se que, para a emergência das ninfas da primeira geração são necessários 500 a 525 ºC dia, e para a segunda geração 1270 a 1295 ºC día.

Antes do início das eclosões colocam-se cintas adesivas com cola branca, dos dois lados, em volta dos ramos atacados, para capturar as primeiras ninfas móveis (Fig. 32) e determinar o início, pico e fim das eclosões.

• **Avaliação da intensidade de ataque**

Para determinar a intensidade de ataque da praga efectuar a observação visual de 100 frutos ao acaso (um fruto por árvore, em 100 árvores).
c) Observações, contagens e registos

O Quadro 5 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução da cochonilha de S. José.

Quadro 5 - Métodos de amostragem e registos a efectuar para acompanhamento da evolução da cochonilha de S. José.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armadilhas sexuais</td>
<td>Número de adultos machos capturados/ armadilha / semana</td>
</tr>
<tr>
<td>Cintas adesivas com cola branca</td>
<td>Números de ninhas móveis capturadas</td>
</tr>
<tr>
<td>Observação visual de frutos</td>
<td>Número de frutos atacados*</td>
</tr>
</tbody>
</table>

Obervação: *Considera-se fruto atacado, quando apresentar pelo menos uma forma viva.

4.3.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate à cochonilha de S. José, podem ser recomendados os seguintes meios de luta:

➢ **luta biológica** - No controlo da praga destaca-se a acção de parasitóides como, Encarsia perniciosi, Aphytis aonidia e A. proclia e predadores como, Chilocorus bipustulatus e Rhyzopus lophantae (Guimarães, 1993). Assim, deve fomentar-se a limitação natural e promover a utilização de produtos fitofarmacêuticos neutros a pouco tóxicos para os auxiliares nomeadamente, para os himenópteros e coccinelídeos, grupos particularmente importantes no controlo desta praga.

➢ **luta cultural** - no Inverno, realização de podas mais acentuadas nas árvores e/ou ramos com maior intensidade de ataque, queimando-os de seguida. É igualmente aconselhado
retirar todos os frutos atacados do pomar;

- **Luta química** - utilização de produtos fitofarmacêuticos homologados para este inimigo, com referência aos aconselhados em protecção integrada na cultura das pomóideas (Cavaco et al., 2006). Quando a praga é detectada no Inverno as aplicações devem ser realizadas o mais próximo possível do abrolhamento. Ao longo do período cultural os tratamentos fitofarmacêuticos devem ser efectuados quando for atingido o pico de saída das ninhas móveis nas cintas adesivas (em qualquer das gerações).

b) Informação relevante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 órgãos (ramos, folhas ou frutos), à razão de 2 órgãos por árvore em 50 árvores, ao acaso, para verificar a presença da praga. Caso detecte a presença da praga no seu pomar deve efectuar um tratamento fitossanitário.”

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

4.4. Afídeo ou piolho cinzento (Dysaphis plantaginea Pass.)

4.4.1. Morfologia

Os **adultos** medem entre 1,5 a 3 mm de comprimento, são globosos e apresentam uma coloração que varia entre o verde azeitona escuro e o castanho violáceo. Possuem antenas tão longas como o corpo, e apresentam a cauda curta, triangular e larga na base. Os sifões são longos e negros (ACTA, 1977). Os **ovos** são amarelos claros após a postura, tornando-se mais tarde pretos e brilhantes.

4.4.2. Bioecologia e estragos

Este afídeo tem um ciclo de vida completo ou holocíclico. Hiberna na forma de ovo, que eclode na Primavera, dando origem a fêmeas ápteras (fundadoras). Estas originam gerações de fundatrigéneas ápteras que se desenvolvem no hospedeiro primário, a maceira (Fig. 33) (Vieira, 1993).
A partir da terceira geração dão origem a gerações aladas, que migram para o hospedeiro secundário do gênero Plantago, geralmente, de Maio a Julho. No Outono, dão origem às sexúparas. Destas, as que originam fêmeas sexuadas (giníparas) regressam ao seu hospedeiro primário, enquanto que as que originam os machos se mantêm sobre o hospedeiro secundário. Aí, dão origem a machos alados que regressam à macieira, onde encontram as fêmeas ápteras sexuadas (Vieira, 1993). Após a cópula, as fêmeas põem os ovos de Inverno isoladamente na base dos gomos e fendas da casca (Barbagallo et al., 1997).

O ciclo de vida de Dysaphis plantaginea encontra-se representado esquematicamente na figura 34.

O afídeo cinzento é a espécie que causa maiores prejuízos na macieira. Este afídeo forma densas colónias na página inferior das folhas, provocando fortes enrolamentos. A saliva injectada pelo piolho tem enzimas que são conduzidas no floema provocando a deformação de orgãos florais, jovens frutos, rebentos e folhas, afectando o seu crescimento (Fig. 35) (Barbagallo et al., 1997). As folhas tornam-se amarelas e caem (Vieira, 1993).
O piolho cinzento produz melada que constitui uma fonte de alimento para formigas e pode levar ao aparecimento de fumagina intensa sobre folhas e frutos (Barbagallo et al., 1997).

4.4.3. M étodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização do afídeo cinzento nos POB.

a) Época e periodicidade de realização das observações

|------|------|------|------|------|------|------|------|------|------|------|------|

Observação:
- Primavera/Verão - Avaliação da intensidade de ataque e importância dos estragos

b) Método (s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

• Avaliação da intensidade de ataque e importância dos estragos

Para a avaliação da intensidade de ataque e importância dos estragos as observações devem ter início em finais de Março/ início de Abril, por altura do inchamento do gomo, e ser mantidas até ao Verão. São efectuadas em função do estado fenológico, do seguinte modo:

• do inchamento do gomo até ao botão verde, observar visualmente 100 inflorescências (2 inflorescências por árvore, em 50 árvores) e registar o número de inflorescências infestadas;

• nos estados F à J observar 100 infrutescências ou rebentos e registar o número de órgãos infestados;

• uma vez iniciado o crescimento dos frutos, efectuar as observações em 100 rebentos e registar o número de rebentos infestados.

c) Observações, contagens e registos

O Quadro 6 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do afídeo cinzento.
Quadro 6 - Métodos de amostragem e registos a efectuar para acompanhamento da evolução do afídeo cinzento.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação visual de orgãos (inflorescências, infrutescências ou rebentos)</td>
<td>Percentagem (%) de orgãos infestados*</td>
</tr>
</tbody>
</table>

Observação: *Considera-se orgão infestado, quando apresentar pelo menos uma forma áptera do insecto

4.4.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate ao afídeo ou piolho cinzento, podem ser recomendados os seguintes meios de luta:

- **luta biológica** - limitação natural da praga proporcionada pela presença dos inúmeros insetos auxiliares predadores e parasitóides de *D. plantaginea*, nos pomares;

- **luta cultural** - no âmbito da luta cultural recomenda-se as práticas culturais que impedem a ocorrência de desequilíbrios que favoreçam o desenvolvimento da praga. Para evitar o excessivo vigor da árvore, recomenda-se que sejam efectuadas podas e adubações azotadas equilibradas.

Recomenda-se a instalação de sebes para fomentar a presença de insetos auxiliares.

- **luta química** - utilização de inseticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada das pomóideas (Cavaco et al., 2006).

b) Informação relevante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 orgãos (inflorescências, infrutescências ou rebentos), à razão de dois orgãos/ árvore x 50 árvores, ao acaso), para determinar a percentagem (%) de orgãos infestados. Considera-se orgão infestado, quando se encontra uma forma áptera do insecto. Deve efectuar um tratamento fitossanitário, quando registar 2% rebentos infestados.”

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em
proteção integrada.

4.5. A fídeo ou piolho verde (*Aphis pomi* De Geer)

4.5.1. Morfologia

Os ovos apresentam cor verde à postura, passando a preta em contacto com o ar. As ninhas ápteras resultantes dos ovos de Inverno têm coloração verde escura (López et al., 1992).

O corpo dos adultos ápteros é oval, globoso, de cor verde-claro, com as antenas, sifões, patas e cauda negras (Fig. 36). Medem entre 1,5 a 2 mm de comprimento. Os adultos alados têm a cabeça e o tórax negro e no abdómen podem distinguir-se três pares de manchas laterais de cor negra, situadas acima dos sifões (ACTA, 1977; López et al., 1992).

4.5.2. Bioecologia e estragos

É uma espécie monóica e holocíclica (Barbagallo et al., 1997), que passa o Inverno na forma de ovo. Os ovos são postos no Outono e eclodem na altura do abrolhamento, emergindo as fundadoras. Sucedem-se as gerações partenogenéticas (10 ou mais) (Vieira, 1993). As virginíparas aladas surgem a partir de Abril, e são responsáveis pela disseminação da espécie para outras árvores (López et al., 1992). Em cada geração, as formas aladas são produzidas em menor número e aparecem mais tarde, como resposta ao aumento das colónias (Barbagallo et al., 1997). Em Outubro, aparecem as sexúparas aladas que dão origem a machos e fêmeas ovíparos ápteros (López et al., 1992). Após a cópula as fêmeas depositam os ovos de Inverno, em grupo junto ou sobre os gomos (Barbagallo et al., 1997).

*Fig. 36 – Fêmea adulta de *Aphis pomi* (original de Oliveira, 1998).*
Na figura 37 pode observar-se a representação esquemática do ciclo biológico de Aphis pomi.

As colónias de A. pomi observam-se nas zonas terminais dos lançamentos em crescimento (Fig. 38). Encontram-se com frequência na página inferior das folhas, que se enrolam e deformam em resultado da alimentação do afídeo (López et al., 1992).

Fig. 37 – Ciclo de vida de Aphis pomi (original dos autores).

Fig. 38 – Rebento atacado pelo piolho verde (original de Pinto, 2000).

Em resultado da sua alimentação, o afídeo verde produz melada que constitui uma fonte de alimento para formigas e pode levar ao aparecimento de fumagina intensa sobre os órgãos verdes, afectando a capacidade fotossintética e diminuindo o valor comercial dos frutos (López et al., 1992).

As folhas ficam enroladas como resultado da actividade do afídeo, podendo mesmo cair. Os maiores estragos causados por esta espécie podem ser observados em árvores jovens, cujo crescimento é afectado e reduzido (Barbagallo et al., 1997).

4.5.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização do afídeo verde nos POB.

a) Época e periodicidade de realização das observações

|------|------|------|------|------|------|------|------|------|------|------|------|

Observação:

- Primavera/Verão - Avaliação da intensidade de ataque e importância dos estragos
b) Método (s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- Avaliação da intensidade de ataque e importância dos estragos

A avaliação da intensidade de ataque tem início em finais de Março/ início de Abril, por altura do inchamento do gomo, e prolonga-se até à colheita. São efectuadas observações visuais em 100 rebentos (dois rebentos por árvore, em 50 árvores ao acaso), com periodicidade semanal.

c) Observações, contagens e registos

O Quadro 7 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do afídeo verde.

Quadro 7 – Métodos de amostragem e registos a efectuar para o acompanhamento do afídeo verde.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação visual de rebentos</td>
<td>Percentagem (%) de rebentos infestados*</td>
</tr>
</tbody>
</table>

Observação: *Considera-se rebento infestado, quando apresentar pelo menos uma forma áptera do insecto.

4.5.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate ao afídeo ou piolho verde, podem ser recomendados os seguintes meios de luta:

- **luta biológica** - limitação natural da praga proporcionada pela presença dos inúmeros insetos auxiliares predadores e parasitóides de *A. pomi*, nos pomares.

- **luta cultural** - no âmbito da luta cultural recomenda-se as práticas culturais que impedem a ocorrência de desequilíbrios que favoreçam o desenvolvimento da praga. Para evitar o excessivo vigor da árvore, recomenda-se que sejam efectuadas podas e adubações azotadas equilibradas.

Recomenda-se a instalação de sebes para fomentar a presença de insectos auxiliares.

- **luta química** - utilização de insecticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada das pomóideas (Cavaco et al., 2006).

- 35 -
b) Informação relevante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 rebentos (2 rebentos/ árvore x 50 árvores, ao acaso), para determinar a percentagem (%) de rebentos infestados. Considera-se rebento infestado, quando se encontra uma forma áptera do insecto. Deve efectuar um tratamento fitossanitário, quando registar 10-15% de rebentos infestados no estado C₃-E₂ ou 15% de rebentos infestados no estado F até Setembro.”

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

4.6. Pulgão lanígero (*Eriosoma lanigerum* Hausm.)

4.6.1. Morfologia

As virginíparas ápteras apresentam cerca de 2 a 4 mm de comprimento, antenas curtas e sifões ausentes ou pouco aparentes. Têm uma coloração castanha violácea e o corpo coberto por uma secreção cerosa de filamentos esbranquiçados (ACTA, 1977). As virginíparas aladas têm a cabeça e o tórax negros e brilhantes e o abdômen castanho-avermelhado, com secreções cerosas. Têm cerca de 1,6 a 2,3 mm de comprimento (Barbagallo et al., 1997).

4.6.2. Bioecologia e estragos

O pulgão lanígero apresenta um ciclo de vida analocíclico, isto é, vive exclusivamente na maceira (Fig. 39) (Vieira, 1993).

![Fig. 39 - Ciclo de vida do *Eriosoma lanigerum* (adaptado de ACTA, 1977).](image)
Hiberna sob a forma de ninfa nas rugosidades do tronco, no colo da árvore e nas raízes grossas (Barbagallo et al., 1997). A partir do mês de Maio, encontram-se as primeiras colónias desta praga (Fig. 40). Se a temperatura for favorável, ocorrem até 12 gerações anuais partenogenéticas, podendo cada fêmea adulta originar mais de 100 ninfas (ACTA, 1977).

A partir do fim do Verão podem surgir as sexúparas e as formas sexuadas, que podem por os ovos de Inverno. No entanto, as fundadoras provenientes dos ovos de Inverno não se desenvolvem e morrem (Barbagallo et al., 1997).

A continuidade da espécie, durante o Inverno, é assegurada unicamente por ninfas e por algumas fêmeas partenogenéticas (Fig. 40) (ACTA, 1977).

As picadas resultantes da alimentação do insecto prejudicam o crescimento da árvore e provocam o aparecimento de galhas sobre os jovens ramos, que podem evoluir para tumores (Fig. 41), e provocam a má circulação da seiva e o enfraquecimento dos ramos. Estes tumores constituem portas de entrada para outros inimigos (ACTA, 1977).

4.6.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização do pulgão lanígero nos POB.

a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observação:
- Primavera/Verão – Determinação da intensidade de ataque
- Inverno – Determinação da intensidade de ataque
b) Método(s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- **Determinação da intensidade de ataque**

Nos POB, durante o Inverno, deve observar-se 50 árvores para determinação do número de árvores atacadas pelo pulgão lanígero.

Durante o desenvolvimento vegetativo da cultura deve observar-se 100 ramos ou 100 árvores (tronco, ramos e rebentos), à razão de 2 órgãos por árvore em 50 árvores, ao acaso, para determinar o número de ramos e árvores atacadas nas parcelas.

Estas observações devem ser complementadas com a técnica das pancadas em 100 ramos (2 ramos por árvore em 50 árvores ao acaso), para determinação do número de indivíduos capturados através desta técnica.

c) Observações, contagens e registos

O Quadro 8 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do pulgão lanígero.

Quadro 8 - Métodos de amostragem e registos a efectuar para o acompanhamento do pulgão lanígero.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação visual de ramos ou árvores</td>
<td>Percentagem (%) de ramos ou árvores infestados*</td>
</tr>
<tr>
<td>Técnica das pancadas</td>
<td>Número de indivíduos capturados</td>
</tr>
</tbody>
</table>

Observação: *Considera-se ramo ou árvore infestado, quando apresentar pelo menos uma forma áptera do inseto.

4.6.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate ao pulgão lanígero, podem ser recomendados os seguintes meios de luta:

- **Luta biológica** - Este afídeo é fortemente parasitado pelo parasitóide Aphelinus mali (Fig. 42). Assim, deve fomentar-se a limitação natural e promover a utilização de produtos fitofarmacéuticos neutros a pouco tóxicos para os auxiliares nomeadamente, para os himenópteros, grupo particularmente importante no controlo desta praga.
Métodos de previsão e evolução dos inimigos da cultura das pomóideas

Fig. 42 - Colónia de pulgão lanígero parasitado por Aphelinus mali (original de Oliveira, 2000).

- **Luta cultural** - no âmbito da luta cultural recomenda-se as práticas culturais que impedem a ocorrência de desequilíbrios que favoreçam o desenvolvimento da praga. Para evitar o excessivo vigor da árvore, recomenda-se que sejam effectuadas podas e adubações azotadas equilibradas.

Recomenda-se a instalação de sebes para fomentar a presença de insectos auxiliares.

- **Luta química** - utilização de insecticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada das pomóideas (Cavaco et al., 2006). Para estimular o desenvolvimento dos auxiliares recomenda-se não tratar o terço superior da copa para.

b) Informação relevante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 órgãos (ramos, troncos e rebentos), à razão de 2 órgãos por árvore em 50 árvores, ao acaso, para determinar a percentagem (%) de órgãos infestados. Considera-se órgão infestado, quando se encontra uma forma áptera do inseto. Deve efectuar um tratamento fitossanitário quando registar 10% de ramos ou árvores infestados.”

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.
4.7. Mosca do Mediterrâneo (Ceratitis capitata Wiedemann)

4.7.1. Morfologia

Os ovos têm cerca de 1 mm de comprimento, são fusiformes, alongados, brancos à postura, amarelecendo pouco tempo depois. A superfície apresentam uma micro-retícula hexagonal invisível à vista desarmada (López et al., 1992).

As larvas são brancas, ápodas, pontiagudas na parte anterior e largas posteriormente. No final do seu desenvolvimento têm cerca de 9 mm de comprimento. As pupas têm forma de barril e cor parda amarelada (Fig. 43) (López et al., 1992).

O adulto é um díptero, com dimensões ligeiramente menores que a mosca doméstica e de cores mais vivas. A cabeça é amarela, com grandes olhos verdes. O tórax é cinzento prateado com manchas negras e apresenta inúmeras sedas. As asas possuem três linhas alaranjadas, uma longitudinal e duas transversais com traços escuros (Fig. 44).

A fêmea tem o abdómen em forma cónica que termina com um oviscapo forte e pontiagudo. O macho é mais pequeno do que a fêmea e tem duas sedas na cabeça (López et al., 1992).

![Fig. 43 - Pupas de Ceratitis capitata (original de Pinto, 2000).](image)

![Fig. 44 - Adulto de Ceratitis capitata (original de Goidánich, 1960).](image)

4.7.2. Bioecologia e estragos

A mosca do mediterrâneo hiberna no solo em forma de pupa que, na Primavera, eode dando origem aos adultos (López et al., 1992).

Após o acasalamento, as fêmeas fazem as posturas dos ovos inserindo o oviscapto no interior dos frutos, a uma profundidade de 1 a 2 mm (Ponti et al., 1991), podendo haver mais do que uma postura no mesmo fruto. Cada fêmea pode pôr em média 200 a 600 ovos. O período de
incubação está geralmente compreendido entre os dois a cinco dias após a oviposição (López et al., 1992), dependendo das condições ambientais, especialmente da temperatura, da natureza do fruto e da localização das posturas (Vieira, 1952).

Após a eclosão, a larva inicia de imediato a sua alimentação. O estado larvar dura cerca de 11 a 13 dias (López et al., 1992), durante os quais passa por três instares larvares, aumentando, progressivamente, de tamanho e voracidade (Vieira, 1952). No final do desenvolvimento as larvas abandonam o fruto, procuram um refúgio no solo para pupar (López et al., 1992). O adulto emerge nove a 12 dias depois, dando origem a uma nova geração da praga (Ponti et al., 1991) (Fig. 45).

Os prejuízos causados por esta praga são muito consideráveis uma vez que as posturas são elevadas. As picadas causadas pelas fêmeas constituem uma porta de entrada para diversos agentes patogénicos (fungos e bactérias), estando a zona escura que circunda o orifício relacionada com a necrose dos tecidos. As larvas causam o apodrecimento e queda do fruto em consequência da sua alimentação.

4.7.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização da mosca do Mediterrâneo nos POB.
a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observação:
- Verão – Determinação da curva de voo

b) Método (s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- Determinação da curva de voo

No início do ciclo vegetativo são instaladas armadilhas cromotrópicas amarelas adesivas com feromona e garrafas mosqueiras para captura de adultos (Fig. 46). Nas garrafas mosqueiras são colocados atractivos, como o trimeclip, trimetilamina ou acetato de amónio.

As observações das armadilhas são feitas, semanalmente, até perto da maturação dos frutos, altura em que passam a ser bi-semanais, dado se tratar do período de maior risco.

![Garrafa mosqueira - tipo dome (original de DPC/ DRAALG).](image)

A observação das armadilhas deve ser complementada com a observação visual de 100 frutos e de fêmeas.

A observação visual de 100 frutos (4 frutos x 25 árvores, ao acaso) é feita para determinação do início das picadas e da percentagem de frutos picados.

A observação em laboratório dos abdómens das fêmeas (até 10 fêmeas por cada recolha) é efectuada aquando das primeiras capturas, para avaliar a fecundidade das fêmeas.

c) Observações, contagens e registos

O Quadro 9 sintetiza os métodos e as metodologias a utilizar, bem como os registos a
efectuar para o acompanhamento da evolução da mosca do Mediterrâneo.

Quadro 9 - Métodos de amostragem e registos a efectuar para o acompanhamento da mosca do Mediterrâneo

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armadilhas alimentares</td>
<td>Número de adultos capturados/dia/armadilha</td>
</tr>
<tr>
<td>Armadilhas cromotrópicas + feromona</td>
<td>Número de adultos capturados/dia/armadilha</td>
</tr>
<tr>
<td>Observação de fêmeas em laboratório</td>
<td>Número de fêmeas fecundadas e com ovos viáveis</td>
</tr>
<tr>
<td>Observação visual de frutos</td>
<td>Número de frutos picados*</td>
</tr>
</tbody>
</table>

Observação: *Considera-se fruto picado desde que tenha pelo menos uma perfuração.

4.7.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate à mosca do mediterrâneo, podem ser recomendados os seguintes meios de luta:

- **luta cultural**: tendo em vista reduzir os níveis populacionais da praga podem ser recomendadas no aviso as seguintes práticas culturais:
 - colheita e destruição dos frutos picados, enterrando-os a uma profundidade mínima de 50 cm;
 - tratar os hospedeiros alternativos situados na parcela ou em parcelas vizinhas;
 - em parcelas sem enrelvamento pode recomendar-se a passagem do destruidor de lenho para destruir os frutos picados existentes no solo.

- **luta química** - utilização de inseticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada de pomóideas (Cavaco et al., 2006);

- **luta biotécnica** - desde 2004, estão em curso, nas Direcções Regionais do Ribatejo e Oeste e da Beira Litoral, ensaios com a técnica da captura em massa e da atracção e morte como alternativas à luta química para o combate deste inimigo.

b) Informação relevante para a emissão do aviso

Para a emissão do aviso é importante ter informação sobre:

- detecção das primeiras fêmeas fecundadas;
recomendação de tratamentos fitossanitários localizados, nos períodos de baixa pressão da praga.

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados capturas de (Nº) indivíduos nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 150 frutos (5 frutos x 30 árvores) ao acaso. Deve efectuar um tratamento fitossanitário quando registar 2 a 3 frutos atacados”.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

4.8. Mineiras

As mineiras referidas como mais importantes na cultura das pomóideas são: Lythocollethis blancardella (F.), Lythocollethis corylifoliella (Haw.), Leucoptera scitella (Zell.) e Lyonetia clerkella (L.).

4.8.1. Morfologia

a) Mineira marmoreada (Lythocollethis blancardella (F.))

O adulto tem cabeça acinzentada e mede cerca de 8 a 9 mm de comprimento. As asas anteriores são estreitas, de coloração castanha dourada, com bandas brancas ou amareladas e franjas. As asas posteriores são muito estreitas e têm grandes franjas. A lagarta tem cerca de 7 a 8 mm, é amarelada com manchas castanhas no sétimo e oitavo segmento (Fig. 47) (Bonnemaison, 1962).

Fig. 47 – Da esquerda para a direita: lagarta do quinto instar; pupa; exúvia da pupa e adulto de Lythocollethis blancardella (original de Pinto, 2000).
b) Mineira em placa (Lythocollethis corylifoliella (Haw.))

O **adulto** apresenta um comprimento de 5 a 6 mm e coloração amarelada com uma linha longitudinal verde. A cabeça, a armadura bucal e o tórax são acastanhados (Fig. 48) (Bonnemaison, 1962).

![Image](image1.png)

Fig. 48 – Da esquerda para a direita: lagarta; exúvia pupal e adulto de Lythocollethis corylifoliella (original de Pinto, 2000).

c) Mineira circula (Leucoptera scitella (Zell.))

O **adulto** tem cerca de 6 a 7 mm de envergadura, asas anteriores esbranquiçadas e brilhantes com uma estria acastanhada na metade proximal da asa. As asas posteriores são cinzentas claras e têm franjas. As **lagartas** têm cerca de 4 mm, coloração amarelada a castanha clara e a cabeça pequena e castanha (Fig. 49) (Bonnemaison, 1962).

![Image](image2.png)

Fig. 49 – Da esquerda para a direita: lagarta do 3º instar; pupa e adulto de Leucoptera scitella (original de Pinto, 2000).

d) Mineira sinuosa (Lyonetia clerkella L.)

O **adulto** mede aproximadamente 8 a 9 mm de envergadura e tem asas estreitas com longas sedas. As asas anteriores são brancas, com extremidades avermelhadas, enquanto que as posteriores são cinzentas claras. A **lagarta** tem 8 a 9 mm e coloração verde com duas manchas triangulares nos três primeiros segmentos (Bonnemaison, 1962).
4.8.2. Bioecologia e estragos

a) Lythocollethis blancardella (F.)

A mineira marmoreada hiberna na forma de pupa nas folhas caídas no solo (Bayer, 2003). Em Abril/ Maio ocorre a emergência dos adultos. A fêmea, após o acasalamento, inicia a postura dos ovos, de forma isolada, na superfície da página inferior das folhas, próximo da nervura principal. Nos primeiros instares, as lagartas escavam uma galeria linear sinuosa assumindo o aspecto de linha verde empolada, muito pouco evidente na página inferior da folha. No terceiro instar, o perfil da galeria é variável, adoptando normalmente a forma de placa na página inferior da folha, tornando-se acastanhada à medida que vai envelhecendo (Fig. 50).

Durante o quarto e quinto instar, a lagarta não incrementa a superfície da galeria, mas consegue perfurá-la em profundidade, devorando as células do parênquima em palicada, até atingir a epiderme da página superior. Este processo é repetido de forma descontínua. Desta forma, vista pela página superior, a galeria apresenta o aspecto de um conjunto de pontuações esbranquiçadas, o que lhe confere o nome vulgar de mineira marmoreada das folhas.

No fim do desenvolvimento, a lagarta constrói um casulo no centro da folha para pupar. As lagartas da primeira geração iniciam este processo em meados de Maio. Esta mineira tem quatro a cinco gerações anuais (López et al., 1992).

Na figura 51 podemos observar a representação esquemática do ciclo biológico de L. blancardella.

Os sintomas característicos de ataque desta mineira são a presença de galerias em forma de bolsas, visíveis em ambas as páginas da folha. Na página superior aparecem manchas
esbranquiçadas e zonas acastanhadas, ficando a galeria com um aspecto marmoreado. Na página inferior, a epiderme correspondente à galeria fica acastanhada (Bayer, 2003).

Os estragos provocados são proporcionais ao número de galerias por folha. A destruição da superfície foliar leva à diminuição da área fotossintética (López et al., 1992).

Fig. 51 – Ciclo de vida de *Lythocolethis blancardella* (original dos autores).

b) *Lythocolethis corylifoliella* (Haw.)

A mineira em placa hiberna na forma de pupa, em folhas caídas no solo. Os primeiros adultos emergem no início da Primavera. As fêmeas depositam os ovos, de forma isolada, na página superior da folha, quatro a cinco dias depois da emergência. Após a eclosão dos ovos, a lagarta neônata perfura a epiderme, e começa a escavar uma galeria epidérmica ligeiramente alongada, que é apenas visível na página superior da folha (Bayer, 2003).

A lagarta desenvolve-se numa galeria situada entre o parênquima lacunoso e a epiderme superior da folha. Pouco a pouco, a galeria aumenta em resultado da alimentação da lagarta, o que faz com que a epiderme fique destacada e com coloração cinzenta e branca (Bayer, 2003), originando uma galeria com aspecto de placa, que lhe confere o nome comum de mineira em placa (Fig. 52). No interior da galeria são bem visíveis os excrementos produzidos pelas lagartas.

No final do desenvolvimento, a lagarta pupa no interior da galeria, sem formar o casulo. Ao fim de cerca de 10 a 12 dias emerge o adulto. Sucedem-se as gerações até ao Outono, altura em que a praga pupa para passar o Inverno (López et al., 1992).

Ao escavar as galerias, a praga provoca a diminuição da superfície foliar e, consequentemente, da área fotossintética da árvore (López et al., 1992).
c) Leucoptera scitella (Zell.)

A mineira circular hiberna na forma de pupa, no interior do casulo que a larva tece em fendas, rugosidades do tronco, em folhas da flora espontânea ou em frutos (López et al., 1992).

No final de Março, início de Abril começa a emergência dos adultos, que dão origem à primeira geração da praga. Após o acasalamento, as fêmeas realizam as posturas, de forma isolada e, preferencialmente, na página inferior da folha (Bonnemaison, 1962).

Após a eclosão, a lagarta neónata penetra na epiderme foliar, atravessando o parênquima para se posicionar abaixo da epiderme na página superior. Durante o seu desenvolvimento, a lagarta alimenta-se das células do parênquima em paliçada.
A lagarta do primeiro instar escava uma galeria de contorno irregular muito pequena. A lagarta do segundo e terceiro instares continuam a aumentar o tamanho da galeria. Contudo, a maior parte da galeria é escavada pela lagarta do quarto instar, que lhe confere contorno circular típico (Fig. 54), o que lhe confere o nome vulgar de mineira circular.

![Fig. 54 - Galerias de Leucoptera scitella em diferentes fases de evolução (original de Pinto, 2000).](image)

Pouco antes de pupar, a lagarta do quarto instar realiza uma incisão em forma de meia-lua na epiderme superior da folha e sai para o exterior, onde tece o casulo, que prende em quatro pontos ao suporte vegetal. O casulo é branco, compacto, em forma de H e a pupa ocupa a parte central. O casulo apresenta os dois pólos abertos: o apical por onde emergirá o adulto, e o basal por onde será removida a exúvia da última muda larvar. A maioria das lagartas das gerações de Primavera/Verão pupa nas folhas e frutos, e só raramente em ramos ou troncos.

Na figura 55 podemos observar a representação esquemática do ciclo de vida de L. scitella.

![Fig. 55 - Ciclo de vida de Leucoptera scitella (original dos autores).](image)

O principal sintoma de ataque desta mineira é a presença de galerias de contorno circular nas folhas. O tamanho das galerias varia consoante o estado de desenvolvimento da lagarta.
Em caso de ataques elevados, pode verificar-se desfoliação prematura das árvores (López et al., 1992).

d) Lyontetia clerkella L.

A mineira sinuosa hiberna na forma de adulto em zonas abrigadas.

Em Abril/ Maio, após a emergência e acasalamento, as fêmeas realizam as posturas na página inferior das folhas próximo da nervura principal (Bonnemaison, 1962). Os ovos são colocados isoladamente no parênquima em paliçada, imediatamente abaixo da epiderme superior, sendo aí que se processa o desenvolvimento da lagarta. A detecção dos ovos é difícil, uma vez que a incisão da postura é reduzida e cicatriza rapidamente, tornando-se imperceptível.

A lagarta neónica escava a galeria a partir da base da nervura principal, onde o ovo é frequentemente depositado. A galeria adquire traçado irregular, uma vez que a lagarta invade o limbo em todos os sentidos, dando volta muitas vezes sobre si mesma, fazendo vários anéis. A lagarta escava a galeria em pleno tecido em paliçada, bem visível à superfície da folha. Esta galeria é muito comprida e estreita, apresentando algumas curvas muito pronunciadas em forma de serpentina, o que lhe confere a designação vulgar de mineira sinuosa. Quando a lagarta encontra a nervura secundária corta-a, originando a morte de parte do limbo foliar e majorando os estragos causados.

Quando a lagarta atinge o último estado, alarga a galeria na parte terminal e abandona-a para pupar, fazendo uma pequena incisão na face superior do limbo. A ninhose ocorre no interior de um casulo branco bem visível, em forma de X entre os bordos da folha. Após a emergência, os adultos acasalam e fazem as posturas novamente sobre as folhas, na extremidade dos novos rebentos.

Os adultos da última geração refugiam-se e permanecem em diapausa até à Primavera seguinte. A espécie L. clerkella é extremamente resistente a Invernos rigorosos. Em condições normais a praga apresenta três a quatro gerações anuais, aparecendo a primeira geração na altura da floração (Bayer, 2003).

Na figura 56 podemos observar a representação esquemática do ciclo biológico de L. clerkella. Esta mineira escava galerias sinuosas nas folhas, levando à redução da área foliar. Os danos causados pela primeira geração são insignificantes, enquanto que os causados pela segunda e terceiras gerações, em meados de Junho/ Julho, são mais graves (Bayer, 2003).
4.8.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização das mineiras nos POB.

a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observação:
- Primavera / Verão - Acompanhamento do desenvolvimento da praga; Determinação da curva de vôo; Determinação da intensidade de ataque
- Outono / Inverno - Captura de lagartas da geração hibernante e determinação da emergência de adultos

b) Método (s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

• Captura de lagartas da geração hibernante e determinação da emergência de adultos

- *Leucoptera scitella*: desde meados a finais de Agosto, colocam-se bandas de cartão canelado castanho nos troncos dos ramos principais, para interceptar as lagartas hibernantes quando se deslocam para os refúgios. No final do Outono retiram-se as bandas e colocam-se em insectário.

- *gênero Lythocollethis* spp.: hiberna no interior das galerias nas folhas caídas no solo, em
formas de pupa. Estas folhas são colocadas em insectário para determinar o início da emergência dos adultos.

- Acompanhamento do desenvolvimento da praga

Os primeiros adultos a emergir no insectário são colocados em mangas de postura para se determinar o início das posturas, desenvolvimento larvar, crisalidação e emergência de novos adultos. Estas informações são complementadas pela determinação da curva de voo que, em conjunto, permitem determinar as diferentes gerações anuais.

- Determinação da curva de voo

Nos POB, o acompanhamento da curva de voo das quatro espécies faz-se através da utilização de armadilhas sexuais, com a feromona respectiva para cada espécie, e contagem semanal dos adultos capturados.

- Determinação da intensidade de ataque

Nos POB, deve observar-se 100 folhas (2 folhas em 50 árvores, ao acaso) e determinar o número de galerias por folha, das diferentes espécies e o número de folhas com uma ou mais lagartas vivas.

No caso das espécies *L. blancardella* e *L. clerkella*, estas observações devem ser complementadas com a técnica das pancadas em 100 ramos (2 ramos por árvore em 50 árvores ao acaso), quando o pomar está no estado fenológico C-3-E2, para determinação do número de indivíduos capturados através desta técnica.

c) Observações e registos

O Quadro 10 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução das lagartas mineiras.

Quadro 10 - Métodos de amostragem e registos a efectuar para o acompanhamento das lagartas mineiras.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captura de lagartas da geração hibernante e determinação da emergência de adultos</td>
<td>Número de adultos que emergem</td>
</tr>
<tr>
<td>Armadilhas sexuais</td>
<td>Número de adultos machos capturados / armadilha / semana</td>
</tr>
</tbody>
</table>
Quadro 10 - Métodos de amostragem e registos a efectuar para o acompanhamento das lagartas mineiras (cont.).

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação visual de folhas</td>
<td>Número de galerias por folha e número de folhas com uma ou mais lagartas vivas</td>
</tr>
<tr>
<td>Técnica das pancadas</td>
<td>Número adultos capturados</td>
</tr>
</tbody>
</table>

4.8.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate às lagartas mineiras, podem ser recomendados os seguintes meios de luta:

- **Luta biológica** – o parasitismo adquire uma grande importância, sendo suficiente, na maioria dos casos, para manter a praga abaixo do nível económico de ataque. Assim, deve fomentar-se a limitação natural e promover a utilização de produtos fitofarmacêuticos neutros a pouco tóxicos para os auxiliares nomeadamente, para os himenópteros, grupo particularmente importante no controlo desta praga.

- **Luta cultural** – dado que o género *Lythocollethis* spp. hiberna em folhas caídas no solo, recomenda-se para o seu controlo o enterramento das folhas ou aplicação de ureia antes da sua queda, de modo a destruir o seu refúgio de Inverno.

- **Luta química** – utilização de insecticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada de pomóideas (Cavaco et al., 2006).

b) Importante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 folhas (2 folhas por árvore, em 50 árvores, ao acaso) para determinar a percentagem (%) de folhas com uma ou mais lagartas vivas e o número de galerias por folha. Deve efectuar um tratamento fitossanitário quando registar os seguintes valores:

- *Lythocollethis blancardella*: 10 % de folhas com uma ou mais lagartas vivas (estado fenológico C₃-E₂), e 100 galerias (Maio até à colheita);

- *Lythocollethis corylifoliella*: 10 a 15 % de folhas com uma ou mais lagartas vivas;
• Leucoptera scitella: 10 a 15% de folhas com uma ou mais lagartas vivas (em maceira) e 1 a 2 galerias por folha (em pera);
• Lyonetia clerkella: 1 a 2 galerias por folha.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

4.9. Psila (Cacopsylla pyri L.)

4.9.1. Morfologia

Os ovos têm uma forma alargada. Apresentam um pequeno filamento no extremo posterior e um pedúnculo no extremo anterior, com o qual são fixados aos órgãos da árvore. Têm cerca de 0,3 mm de comprimento e durante a sua evolução a cor varia de branco a laranja. Antes da eclosão podem observar-se dois pequenos pontos roxos laterais que são os olhos das futuras ninfas (López et al., 1992).

As ninfas são globosas e amareladas no momento da eclosão (ACTA, 1982), passando a adquirir uma coloração verde mais escura à medida que ocorre a sua evolução. Medem cerca de 0,4 mm no primeiro instar, e cerca de 1,7 mm no último instar (Fig. 57) (López et al., 1992).

O adulto tem cerca de 2,2 a 2,9 mm de comprimento, e dois pares de asas membranosas. As patas são robustas e estão adaptadas ao salto. O Abdómen é constituído por 10 segmentos e termina num complexo genital-anal que permite distinguir com facilidade os machos das fêmeas. O adulto recém emergido tem uma cor verde clara (Fig. 58) (López et al., 1992).

Fig. 57 – Ninfa de psila (original de http://www.sito.regione.campania.it).

Fig. 58 – Adultos de psilas (original de López et al., 1992).
Os adultos hibernantes distinguem-se dos adultos estivais devido às maiores dimensões e coloração do corpo. Nas formas hibernantes, as asas possuem manchas sombreadas, enquanto nas formas estivais são transparentes (Matias, 1993).

4.9.2. Bioecologia e estragos

Quando as fêmeas estão maduras e as condições climáticas são favoráveis (temperaturas médias superiores a 10ºC durante dois dias consecutivos), iniciam a postura (López et al., 1992), geralmente de forma isolada e em número reduzido (Matias, 1993), na base das escamas dos gomos ou nas irregularidades da superfície dos ramos (Coelho, 1993). Segundo Coelho (1993), as posturas têm início nos primeiros dias de Fevereiro, alcançando o máximo entre meados de Fevereiro e início de Março.

As posturas das fêmeas estivais, das gerações seguintes, são efectuadas na página inferior das folhas ou na parte terminal dos lançamentos (López et al., 1992). O número de ovos postos por estas fêmeas é muito superior ao das fêmeas de Inverno (Matias, 1993).

Em Portugal, Matias (1993) refere que ocorrem seis a sete gerações anuais, que se sobrepõem (Fig. 59).

Os estragos provocados são de dois tipos, directos e indirectos, sendo os últimos considerados os mais prejudiciais.

Os estragos directos resultam das picadas que os adultos e as ninhas realizam para se alimentarem de seiva, o que provoca uma debilitação da árvore.
Os estragos indirectos são provocados pela melada que as ninfas produzem. Os três primeiros estádios de desenvolvimento da praga coincidem com a fase de maior produção de melada. A melada espalha-se pelas folhas, frutos e lançamentos. Sobre a melada podem desenvolver-se fungos saprófitas, como a fumagina (Fig. 60). A fumagina ao instalar-se, cobre de negro as superfícies ocupadas o que contribui para a diminuição da fotosíntese e consequente debilitação da árvore, redução do calibre dos frutos e depreciação comercial. Ataques muito intensos podem provocar queda prematura das folhas (López et al., 1992).

4.9.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização da psila nos POB.
Métodos de previsão e evolução dos inimigos da cultura das pomóideas

a) Época e periodicidade de realização das observações

|------|------|------|------|------|------|------|------|------|------|------|------|

Observação:
- Primavera/Verão – Determinação da intensidade de ataque

b) Método(s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- Determinação da intensidade de ataque

Nos POB, deve realizar-se a técnica das pancadas, à razão de uma pancada por árvore, em 50 árvores ao acaso, para captura dos vários estados de desenvolvimento da praga.

Devem ser retiradas cerca de 20 fêmeas em cada captura, efectuada através da técnica das pancadas, para o seguimento da evolução da maturação das fêmeas da geração hibernante.

As fêmeas, depois de capturadas, são introduzidas numa solução de água e álcool a 10% durante algumas horas. À lupa, extraem-se os ovários para determinar o seu estado de maturação.

Quando mais de 50% das fêmeas tem ovos maduros, deve complementar-se estas observações recolhendo semanalmente 50 órgãos da planta (1 gomo, folha ou rebento, por árvore em 50 árvores ao acaso) para observar as posturas e determinar o início das eclosões.

Para efectuar a selecção do órgão a recolher e observar deve ter-se em conta a fase do ciclo em que a praga se encontra: as primeiras posturas, da primeira geração, são feitas nas folhas dos corimbos, gomos ou rebentos; as ninhas localizam-se nos órgãos florais mais protegidos a partir do estado D – E – F; os adultos mostram preferência por rebentos ou folhas tenras; as gerações seguintes localizam-se preferencialmente nas folhas tenras dos rebentos em crescimento.

c) Observações, contagens e registos

O Quadro 11 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução da psila.
Quadro 11 - Métodos de amostragem e registos a efectuar para o acompanhamento da psila.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnica das pancadas</td>
<td>Número de ninhas e adultos (machos e fêmeas) capturados</td>
</tr>
<tr>
<td>Observação à lupa dos ovários das fêmeas</td>
<td>Número de fêmeas com ovos maduros</td>
</tr>
<tr>
<td>Observação visual de gomos, rebentos e folhas</td>
<td>Número de ovos total e número de ovos eclodidos</td>
</tr>
</tbody>
</table>

4.9.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate à psila, podem ser recomendados os seguintes meios de luta:

- luta cultural - evitar crescimentos vegetativos muito vigorosos a partir do mês de Maio. Neste sentido devem ser evitadas as podas severas durante o Inverno e adubações azotadas em excesso;

- luta química - utilização de inseticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada de pomóideas (Cavaco et al., 2006).

b) Importante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 ramos, inflorescências ou rebentos (2 órgãos x 50 árvores, ao acaso) para determinar o número de órgãos infestados. Deve efetuar um tratamento fitossanitário quando registar 10% inflorescências ocupadas com ovos (Fevereiro a Abril); 10-15% rebentos infestados com ovos e ninhas (estado fenológico GH) e 15-20% rebentos infestados com ovos e ninhas (desde o estado fenológico H até Outubro).”

O combate da psila é dificultado pela sobreposição de gerações, causada pelo seu grande potencial de multiplicação e pela criação de resistências a alguns inseticidas. Por isso, torna-se imprescindível o conhecimento da sua biologia.

Uma forma eficaz de controlo desta praga consiste em reduzir as suas populações de Inverno. O primeiro tratamento fitossanitário deve realizar-se quando 50% das fêmeas estão maduras, de forma a evitar as posturas. Após este tratamento, é aconselhável a realização de um acompanhamento semanal, através da técnica das pancadas, de forma a comprovar a sua
eficácia e detectar possíveis migrações da psila para os refúgios de Inverno. Se durante o período vegetativo, as populações, da praga atingirem o NEA é aconselhada a repetição do tratamento, com alternância de substâncias activas.

No caso de existir grande quantidade de melada que possa diminuir a eficácia dos tratamentos fitossanitários (dificultando o contacto do produto com as ninfas), é aconselhável a realização de um tratamento anti-melada, 24 horas antes da aplicação do inseticida.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

4.10. Cecidómia (Dasineura pyri Bouché)

4.10.1. Morfologia

Os ovos têm coloração amarela alaranjada, e no final do seu desenvolvimento é possível observar-se à transparência os olhos da larva. Ao eclodirem as larvas são transparentes. No final do seu desenvolvimento apresentam cerca de 2mm de comprimento, e coloração amarelada (López et al., 1992).

O adulto é um pequeno díptero, com cerca de 1,5 a 2,5 mm de comprimento (ACTA, 1977) com as patas mais compridas que o corpo e asas membranosas e transparentes. A apresenta um acentuado dimorfismo sexual. A fêmea possui um abdómen globuloso com um oviscapto na parte terminal. As antenas possuem quatro segmentos. O macho é ligeiramente mais pequeno que a fêmea, e possui o abdómen mais curto e estreito. As antenas são maiores do que as das fêmeas, com catorze segmentos (López et al., 1992).

4.10.2. Bioecologia e estragos

A cecidómia hiberna no solo no estado de larva, dentro de um casulo situado por baixo da copa das árvores. Os adultos emergem na Primavera (López et al., 1992). Após o acasalamento, as fêmeas depositam os ovos nas folhas mais jovens dos rebentos em crescimento (ACTA, 1977).

As larvas eclodem ao fim de três a 12 dias, dependendo das temperaturas, e começam a
alimentar-se de exsudado libertado pelos tecidos afectados (López et al., 1992). Ao alimentarem-se, as larvas libertam uma toxina que faz enrolar a folha (Fig. 61).

![Fig. 61 - Folhas enroladas por cecidómia (original de Mendes, 2006).](image)

No final do desenvolvimento, a larva abandona a folha e cai no solo, onde se enterra e tece um casulo, no interior do qual pupa.

O número de gerações anuais varia entre duas e quatro. Entre Julho e Agosto, dependendo da temperatura, ocorre a última geração. As larvas enterram-se no solo na zona de gotejo das árvores, e permanecem em diapausa até à Primavera seguinte (Fig. 62) (López et al., 1992).

![Fig. 62 - Ciclo de vida da cecidómia (adaptado de López et al., 1992).](image)

Os estragos variam em função da idade das árvores, sendo de particular importância em
árvores em viveiro ou no período de formação. No primeiro caso prejudica a qualidade das plantas e, no segundo, atrasa a entrada em produção. Nos pomares em plena produção a paragem mais ou menos acentuada do crescimento dos lançamentos não tem grande significado sobre a frutificação (López et al., 1992).

4.10.3. Métodos de evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para acompanhamento e monitorização da cecidómia nos POB.

a) Época e periodicidade de realização das observações

|------|------|------|------|------|------|------|------|------|------|------|------|

Observação:

- Primavera/Verão - Emergência dos adultos em insectário e eclosão dos primeiros ovos; Determinação da intensidade de ataque

b) M étodo (s) de amostragem

Para o acompanhamento do ciclo biológico desta espécie e dos estragos provocados podem ser utilizados os seguintes métodos e metodologias de amostragem:

- **Emergência dos adultos em insectário e eclosão dos primeiros ovos**

 Em Junho/Julho, colhem-se folhas com larvas desenvolvidas e colocam-se no insectário submergidas em terra, para determinar o da emergência dos adultos e o início do primeiro voo da praga.

 Após as primeiras emergências, colocam-se os adultos em mangas de postura nas parcelas, para determinar o início das posturas e das eclosões. Este procedimento deve ser efectuado para as gerações seguintes, devendo aproximar-se as condições de laboratório com as condições de campo para evitar desfasamentos que podem induzir em erro.

- **Determinação da intensidade de ataque**

 A determinação da intensidade de ataque é feita através de observações semanais de 100 rebentos, 2 rebentos por árvore, em 50 árvores ao acaso. As observações devem ter início em finais de Março/ início Abril, antes do aparecimento dos botões florais, e continuar até ao mês de Junho/Julho.
c) Observações e registos

O Quadro 12 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução da cecidómia.

Quadro 12 - Métodos de amostragem e registos a efectuar para o acompanhamento da cecidómia.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colocação de larvas em insectário</td>
<td>Número de adultos emergidos</td>
</tr>
<tr>
<td>Colocação de adultos em mangas de posturas</td>
<td>Número de ovos total e número de ovos eclodidos</td>
</tr>
<tr>
<td>Observação visual de rebentos</td>
<td>Percentagem (%) de rebentos atacados</td>
</tr>
</tbody>
</table>

4.10.4. Estratégia a recomendar

a) Meios de Luta

Na elaboração da circular de avisos, para o combate à cecidómia, podem ser recomendados os seguintes meios de luta:

- **Luta química** - utilização de insecticidas homologados para este inimigo, com referência aos aconselhados em protecção integrada de pomóideas (Cavaco et al., 2006).

b) Importante para a emissão do aviso

Sempre que for feita referência ao NEA no aviso, esta deverá ser efectuada do seguinte modo: “Foram registados níveis populacionais considerados importantes nos POB (x e y). O Sr. Agricultor, no seu pomar, deve observar 100 rebentos (2 rebentos por árvore em 50 árvores, ao acaso), para determinar a percentagem de rebentos atacados. Deve efectuar um tratamento fitossanitário quando registar 15% rebentos atacados em árvores jovens e 50% rebentos atacados em árvores adultas”.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.

5. Doenças

Na cultura das pomóideas consideram-se as seguintes espécies de fungos como as principais doenças a nível nacional:
Métodos de previsão e evolução dos inimigos da cultura das pomóideas

Quadro 13 - Nome vulgar e científico das doenças das pomóideas consideradas no documento.

<table>
<thead>
<tr>
<th>Nome vulgar</th>
<th>Nome científico</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedrado</td>
<td>Venturia inaequalis (Cke) Wint. e Venturia pyrina Aderh</td>
</tr>
<tr>
<td>cancro</td>
<td>Nectria galligena Bresad.</td>
</tr>
</tbody>
</table>

A referência constante no quadro anterior tem como base a necessidade de emissão de avisos, recomendações ou informações pelas diferentes EA a nível nacional.

5.1. Pedrado (Venturia inaequalis (Cke) Wint. e Venturia pyrina Aderh)

Os fungos responsáveis pelo pedrado das pomóideas (Venturia inaequalis (Cke) Wint. e Venturia pyrina Aderh) são muito semelhantes tanto na morfologia como no seu comportamento. No entanto, os ataques ocasionados por Venturia pyrina nos ramos de pereira, são mais frequentes e mais graves do que os produzidos por Venturia inaequalis na macieira (Cruz, 1973).

5.1.1 Epidemiologia e sintomatologia

Durante a sua evolução anual, o pedrado passa por duas fases, uma fase parasitária e outra saprófita. Na fase parasitária, sob a forma de micélio, vive subjacente à cutícula das folhas, frutos ou ramos herbáceos. Na fase saprófita, que ocorre depois da queda das folhas, o fungo desenvolve-se no interior dos tecidos do parênquima foliar (Cruz, 1973).

O fungo hiberna na forma de micélio, em pústulas, sobre os ramos ou nas escamas dos gomos, ou na forma de pseudotecas (forma sexuada) nas folhas mortas do ano anterior (Rosa, 1982).

As pseudotecas que se formam por multiplicação sexual, durante o Outono, na fase saprófita do fungo (Cruz, 1973), são a forma hibernante mais importante nas contaminações. Apresentam-se sob a forma de pontuações negras visíveis à lupa que, no fim do Inverno, princípio da Primavera, amadurecem diferenciando os ascos (Fig. 63) (Rosa, 1982) e, dentro destes, os ascósporos (Cruz, 1973).

No princípio da Primavera, sob a acção das chuvas, as pseudotecas maduras projectam os ascósporos que são transportados pelo vento e, ao atingirem os órgãos sensíveis da planta,
originam as infecções primárias (Rosa, 1982). O inóculo primário, constituído essencialmente por ascóporos, pode também incluir conídeos produzidos pelo micélio hibernante, se estiverem presentes pústulas no pomar (Sobreiro, 2001).

![Fig. 63](image1.png)

Fig. 63- Pseudotecas com ascos e ascósporos (original de Oliveira, 1993).

Após as contaminações primárias, dá-se o aparecimento de típicas manchas nas folhas e frutos, que surgem após um período de incubação médio de 10 a 20 dias (Rosa, 1982). As contaminações secundárias resultam dos conídeos formados pelo micélio das infecções primárias, que causam infecções em folhas, frutos e ramos durante os períodos molhados ao longo da estação (Fig. 64).

Enquanto se mantiverem na natureza condições favoráveis, e existirem conídeos e ascósporos, dar-se-ão simultaneamente as duas contaminações, sobrepondo-se os ciclos de contaminação (germinação) – incubação – esporulação (Rosa, 1982).

![Fig. 64](image2.png)

Fig. 64 - Ciclo de vida do pedrado (original dos autores).

Os sintomas em macieira e pereira observam-se em vários órgãos da planta, nomeadamente folhas, pecíolos, flores, sépalas, frutos, lançamentos e escamas dos gomos (Sobreiro, 2001).

As folhas, inicialmente muito sensíveis aos ataques de pedrado, vão-se tornando
progressivamente mais resistentes (Rosa, 1993). Apresentam manchas translúcidas de contorno irregular que se vão tornando mais escuras e de aspecto oliváceo (Fig. 65).

Fig. 65 – Sintomas de pedrado na folha (original de Oliveira, 1993).

Nas flores, as manchas aparecem ao nível das sépalas e pedúnculo (Rosa, 1993). As sépalas são muito importantes pois permanecem aderentes ao fruto até à colheita, podendo ser fonte de inóculo secundário (Sobreiro, 2001).

Nos frutos, os ataques podem dar-se em qualquer fase do seu desenvolvimento, observando-se manchas escuras na periferia, em geral, junto ao cálice, que vão necrosando à medida que o fungo se vai desenvolvendo, provocando o rachamento (Figs. 66 e 67). Nos frutos jovens, um ataque intenso pode provocar a sua queda (Rosa, 1993).

Fig. 66 – Sintomas de pedrado num fruto jovem (original de Oliveira, 1993).

Fig. 67 – Sintomas de pedrado num fruto desenvolvido (original de Oliveira, 1993).

Nos ramos, o ataque dá-se antes da lenhificação dos tecidos, formando-se pústulas que vão adquirindo aspecto aveludado, com forma de pequenas necroses e cancros (Rosa, 1993).
5.1.2. Métodos de previsão e evolução

Neste ponto apresenta-se a época e a periodicidade das observações a realizar, bem como os métodos e metodologias de amostragem que podem ser utilizadas para previsão do risco e monitorização do pedrado nos POB.

a) Época e periodicidade de realização das observações

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observação:
- **Primavera/Verão** - Projecção e contagem dos ascósporos; Previsão das contaminações; Período de incubação e aparecimento das manchas
- **Outono/Inverno** - Determinação da maturação das pseudotecas

b) M étodo(s) de amostragem

- **Determinação da maturação das pseudotecas**

Recolher folhas com manchas de pedrado e colocação em camadas finas na natureza. Iniciar, a partir de Fevereiro, as observações semanais de 10 pseudotecas, até ao aparecimento dos primeiros ascos maduros. A observação dos ascos é feita ao microscópio, para determinar o seu estado de maturação.

- **Projecção e contagem dos ascósporos**

Os técnicos das EA sabem pela sua experiência que ao aparecimento da coloração dos ascósporos, a projecção está eminente.

Para determinação da projecção e contagem de ascósporos são utilizados dois métodos: colocação de rede com lâminas vaselinadas sobre as folhas, colocadas em camadas finas na natureza, e utilização de capta-esporos.

Logo que ocorram as primeiras chuvas faz-se o levantamento de duas lâminas ou da fita do capta-esporos e, ao microscópio, contam-se os ascósporos projectados. Sempre que ocorrem precipitações, as lâminas ou as fitas devem ser retiradas e observadas para a obtenção da curva de projecção de ascósporos.

A contagem dos ascósporos na lâmina faz-se através da observação total do bordo da lâmina e três observações verticais no seu interior. No caso da fita do capta esporos, a observação é feita do mesmo modo, no entanto, a fita é cortada de forma a ficar com a dimensão das
lâminas.

- **Previsão das contaminações**

As contaminações primárias são as contaminações provocadas pelos ascósporos projectados pelas pseudotecas, podendo ocorrer a partir do estado fenológico C, estado sensível ao pedrado. Os órgãos verdes têm de permanecer molhados um determinado período de tempo (humectação) e, em função das temperaturas, o risco de contaminações é nulo, ligeiro, médio ou grave, conforme as curvas de Mills e Laplace (Fig. 68).

![Fig. 68 – Tabela do período de humectação de Mills e Laplace. Estimativa do risco de contaminação de pedrado, em função do tempo de humectação e da temperatura (adaptado de Cruz, 1973).](image)

Exemplo: a 10ºC, o risco de contaminações primárias é nulo abaixo de 14 horas de humectação; ligeiro entre as 14 e as 19 horas de humectação; médio entre as 19 e as 28 horas de humectação; e grave acima das 28 horas.

As contaminações secundárias são as contaminações provocadas pelos conídeos. Após um período de incubação, o fungo manifesta-se na forma de mancha, onde se formam frutificações que tem conídeos na parte terminal. As condições de germinação são semelhantes às dos ascósporos.

As condições ambientais necessárias para que ocorram as contaminações primárias e secundárias são diferentes. Assim, à mesma temperatura e para o mesmo número de horas de humectação, as contaminações secundárias dão-se em menos tempo do que as primárias (Quadro 14). As infecções que ocorrem posteriormente ao aparecimento das manchas, devido às contaminações primárias, são simultaneamente de natureza de primária e secundária.
Quadro 14 - Contaminações primárias e secundárias relacionadas com a temperatura média (adaptado de Cruz, 1971).

<table>
<thead>
<tr>
<th>Temperatura média durante a humectação (°C)</th>
<th>Nº de horas de humectação para início da infecção primária</th>
<th>Nº de horas de humectação para início da infecção secundária</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>9,5</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>8,5</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>8,5</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>6,5</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>6,5</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>18-22</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>23-24</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>8,5</td>
</tr>
<tr>
<td>26</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

Período de incubação e aparecimento das manchas

O período de incubação, para as infecções primárias, é o tempo que decorre entre a contaminação e a altura em que surgem as manifestações externas do parasita. A duração do período de incubação varia em função da temperatura média diária. Os períodos de incubação foram aferidos para cada região por Cruz (1971). Para as regiões do Dão, Ribatejo, Entre Douro e Minho estão apresentados no Quadro 15.

Quadro 15 - Períodos de incubação, das infecções primárias e secundárias, relacionado com a temperatura média (baseado na curva de Mills) para a região do Dão, Ribatejo e Entre Douro e Minho (adaptado de Cruz, 1971).

<table>
<thead>
<tr>
<th>Região do Dão</th>
<th>Temperatura média (°C)</th>
<th>Período de incubação (dias) das infecções primárias</th>
<th>Período de incubação (dias) das infecções secundárias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>23</td>
<td>(*)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-13</td>
<td>19-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-14</td>
<td>17-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-16</td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-20</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-22</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Região do Ribatejo</th>
<th>Temperatura média (°C)</th>
<th>Período de incubação (dias) das infecções primárias</th>
<th>Período de incubação (dias) das infecções secundárias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>22</td>
<td>(*)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16/17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>18-22</td>
<td>12/13</td>
<td>10</td>
</tr>
</tbody>
</table>
Quadro 15 - Períodos de incubação, das infecções primárias e secundárias, relacionado com a temperatura média (baseado na curva de Mills) para a região do Dão, Ribatejo e Entre Douro e Minho (adaptado de Cruz, 1971) (cont.).

<table>
<thead>
<tr>
<th>Temperatura média (ºC)</th>
<th>Período de incubação (dias) das infecções primárias</th>
<th>Período de incubação (dias) das infecções secundárias</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17</td>
<td>(*)</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>18-22</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Legenda: (*) Não definido.

c) Observações e registos

O Quadro 16 sintetiza os métodos e as metodologias a utilizar, bem como os registos a efectuar para o acompanhamento da evolução do pedrado.

Quadro 16 - Métodos de amostragem e registos a efectuar para o acompanhamento do pedrado.

<table>
<thead>
<tr>
<th>Método de amostragem</th>
<th>Registos a efectuar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação das pseudotecas</td>
<td>Estado de maturação dos ascos</td>
</tr>
<tr>
<td>Projecção e contagem de ascósporos</td>
<td>Número de ascósporos capturados na lâmina ou na fita</td>
</tr>
<tr>
<td>Previsão das contaminações</td>
<td>Número de horas de humectação</td>
</tr>
</tbody>
</table>

5.1.3. Estratégia a recomendar

a) Meios de luta

Na elaboração da circular de avisos, para o combate ao pedrado, podem ser recomendados os seguintes meios de luta:

» **luta cultural**: quando o inóculo de Inverno é elevado, deve recomendada a destruição de folhas através da aplicação de ureia ou enterramento das folhas.

» **luta química**: para a recomendação de tratamentos fitossanitários, é fundamental que se verifiquem as seguintes condições: estado fenológico C₃/D, ascósporos maduros e previsão de chuva. Se estas três condições se verificarem simultaneamente, deve-se avisar o agricultor para aplicar um produto de contacto, antes da ocorrência das primeiras chuvas, impedindo
assim que os esporos germinem. Caso não tenha sido feito este tratamento preventivo, desde o início da ocorrência das chuvas, antes de se completarem as 48 horas, deve ser feito um tratamento curativo. Se nenhum dos tratamentos anteriores foi realizado, aconselha-se um tratamento antes do aparecimento das manchas, mas o mais próximo possível dessa data. Esta estratégia de aconselhamento deve ser seguida para as recomendações dos tratamentos seguintes.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em proteção integrada.

5.2. Cancro (*Nectria galligena Bresad.*)

O cancro das pomóideas é considerado, em certas regiões do País, uma das doenças mais graves da macieira, à semelhança do pedrado. Pode igualmente provocar estragos em pereira, mas mais raramente.

5.2.1. Epidemiologia e sintomatologia

O fungo, *Nectria galligena*, é um parasita de ferida. Esta designação deve-se ao facto de qualquer infecção se verificar sempre ao nível de uma lesão, como as provocadas pela queda das folhas, entumescimento dos gomos, poda, ataque de certos fungos e insectos, geada, frio ou ao nível das lenticulas (Palminha, 1993).

O fungo hiberna na forma de pseudotecas que surgem no Inverno ou na Primavera, sobre os tecidos necrosados dos cancrós, e de conídeos, frutificação da forma imperfeita do fungo, nos cancrós com mais de dois anos (Telhada, 1971).

Durante a Primavera, as pseudotecas formam os ascósporos que, conjuntamente com os conídeos, são libertados, penetram na planta através de feridas e originam as infecções (Palminha, 1993).

Os conídeos e os ascósporos são disseminados pela acção da chuva e do vento (López et al., 1992). Os principais períodos de contaminação são a fase da queda das folhas, durante o entumescimento dos gomos, e quando existem feridas de poda ou outras. A ocorrência de infecções depende essencialmente da existência de feridas e da humidade relativa, uma vez que a presença de inóculo é praticamente constante (Palminha, 1993).
A esporulação produz-se desde o fim da Primavera até ao Outono, cessando a formação de conídeos no Inverno. Durante o Inverno formam-se as pseudotecas ao nível dos cancros dos ramos, que irão originar na Primavera os ascóporos (Fig. 69) (Palminha, 1993).

Numa fase inicial, o fungo provoca o aparecimento de uma mancha deprimida, castanha escura, em redor do ponto de infecção (Palminha, 1993). A infecção evolui, aparecendo um cancro que pode alcançar um tamanho considerável e que apresenta uma superfície rugosa (López et al., 1992).

Em ramos jovens pode registar-se murchidão da folhagem e das flores, com a consequente morte dos ramos. Ao nível do cancro a casca acaba por fender, ficando o lenho parcialmente descoberto (Figs. 70, 71, 72 e 73) (Palminha, 1993).
Nos frutos, a doença manifesta-se por podridão (Telhada, 1971), que muitas vezes é confundida com outras podridões, passando, frequentemente, despercebido o ataque do fungo (Palminha, 1993). A área afectada apresenta-se deprimida, castanha escura e com uma margem nítida entre as zonas afectadas e as zonas sãs (Telhada, 1971). A polpa fica mole, húmida e sobre os frutos desenvolve-se uma massa de esporos. Estes sintomas desenvolvem-se normalmente durante a conservação da fruta. As infecções nos frutos são frequentes quando as chuvas antecedem a colheita (Palminha, 1993).

5.2.2. Métodos de previsão e evolução

Embora considerada, em determinadas regiões do País, uma das doenças mais graves, não existe uma metodologia específica de previsão para esta doença. O seu controlo baseia-se na aplicação de medidas preventivas e na luta química. Existem, no entanto, factores que favorecem o aparecimento ou agravamento desta doença, tais como:

- pomares já atacados com esta doença;
- Outonos e Invernos chuvosos;
- solos mal drenados;
- variedades susceptíveis;
- presença de inóculo na lenha de poda;
- abundância de feridas causadas pela queda dos pedúnculos e pecíolos.
5.2.3. Estratégia a recomendar

a) Meios de luta

Na elaboração da circular de avisos, para o combate ao cancro, podem ser recomendados os seguintes meios de luta:

- **luta cultural** – eliminar, através da poda, os ramos atacados; evitar o excesso de adubações azotadas;
- **luta química** – limpeza e desinfeção das feridas e do material da poda; utilização de fungicidas homologados para esta doença, com referência aos aconselhados em protecção integrada de pomóideas (Cavaco et al., 2006).

b) Importante para a emissão do aviso

O combate de determinados inimigos pode ser particularmente relevante no controlo desta doença. A título de exemplo, refere-se o pulgão lanígero que pelo modo como se alimenta, provoca feridas na casca das árvores, constituindo uma porta de entrada a este fungo.

Estando a ocorrência desta doença dependente da existência de feridas, e tendo em conta as feridas deixadas à colheita e à queda da folha podem ser recomendados os seguintes tratamentos com vista a diminuir os estragos:

- o primeiro tratamento deve ser feito logo após a colheita;
- os restantes tratamentos deverão ser efectuados com 1/3 das folhas caídas e na queda total, com produtos à base de cobre.

Quando for recomendada a realização de um tratamento fitossanitário devem ser indicados os produtos fitofarmacêuticos aconselhados (recomendados ou complementares) em protecção integrada.
6. Bibliografia

Direcção-Geral de Protecção das Culturas
Alexandra Gonçalves
Felisbela Mendes
Miriam Cavaco
Nuno Reis

Direcção Regional de Agricultura de Entre Douro e Minho
Ilda Ramadas
José Guerner
Jorge Costa

Direcção Regional de Agricultura da Beira Litoral
Dolores Dias
Helena Pinto
José Batalha
Madalena Neves
Marta Caetano
Vanda Batista

Direcção Regional de Agricultura da Beira Interior
Joaquim Santos Almeida
Maria Nazaré Filipe

Direcção Regional de Agricultura do Ribatejo e Oeste
Fátima Lourenço
José Maria Chichorro
Estados fenológicos - macieira

A - Repouso
B - Pré-abrolhamento
C - Abrolhamento
C₃ - Abrolhamento
D - Botão verde
E - Botão rosa
F - Plena floração
G - Queda das primeiras pétalas
H - Queda das últimas pétalas
I - Vingamento
J - Frutos em desenvolvimento.

(Originais de DPC/ DRABL)
Estados fenológicos - pereira

A - Repouso
B - Pré-abrolhamento
C - Abrolhamento

C3 - Abrolhamento
D - Botão verde
E - Botão rosa

Início da floração
F - Plena floração
G - Queda das primeiras pétalas

H - Queda das últimas pétalas
I - Vingamento
J - Frutos em desenvolvimento.

(Originais de DPC/ DRABL e DPC/ DRARO)
Identificação da Parcela:

<table>
<thead>
<tr>
<th>Designação:</th>
<th>Área:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morada:</td>
<td></td>
</tr>
<tr>
<td>Estação de Avisos:</td>
<td>DRA:</td>
</tr>
</tbody>
</table>

Identificação do observador:

<table>
<thead>
<tr>
<th>Nome:</th>
<th>Serviço a que pertence:</th>
<th>Contacto:</th>
</tr>
</thead>
</table>

Identificação do proprietário da parcela:

<table>
<thead>
<tr>
<th>Nome:</th>
<th>Morada:</th>
<th>Contacto:</th>
</tr>
</thead>
</table>

Identificação da exploração:

<table>
<thead>
<tr>
<th>Local:</th>
<th>Freguesia:</th>
<th>Concelho:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distrito:</td>
<td>DRA:</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO III - Fichas de registo a utilizar nos POB da cultura das pomóideas

REGIÃO DOS ESTADOS FENOLÓGICOS - Macieira

<table>
<thead>
<tr>
<th>Est. Fen. / Data</th>
<th>A - Repouso</th>
<th>B - Pré-abrolhamento</th>
<th>C - Abrolhamento</th>
<th>C₃ - Abrolhamento</th>
<th>D - Botão verde</th>
<th>E - Botão rosa</th>
<th>Início da floração</th>
<th>F - Plena floração</th>
<th>G - Queda das primeiras pétalas</th>
<th>H - Queda das últimas pétalas</th>
<th>I - Vingamento</th>
<th>J - Frutos em desenvolvimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>início</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

(Originais DPC / DRA BL, 2005)
ANEXO III - Fichas de registo a utilizar nos POB da cultura das pomóideas

REGISTO DOS ESTADOS FENOLÓGICOS - Pereira

A - Repouso	B - Pré-abrolhamento	C - Abrolhamento	C₃ - Abrolhamento
D - Botão verde	E - Botão rosa	Início da floração	F - Plena floração
G - Queda das primeiras pétalas	H - Queda das últimas pétalas	I - Vingamento	J - Frutos em desenvolvimento.

(Originais DPC / DRABL e DPC/ DRARO)

<table>
<thead>
<tr>
<th>Est. Fen./ Data</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C₃</th>
<th>D</th>
<th>E</th>
<th>Início da floração</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>início</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
CROQUI DA PARCELA

(Esquema da localização e distribuição das armadilhas para monitorização dos inimigos da cultura, e das estações meteorológicas automáticas (EMA))
<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Nº frutos atacados*</th>
<th>Árvore nº</th>
<th>Nº frutos atacados*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>39</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>17</td>
<td>42</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>18</td>
<td>43</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>44</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>46</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>47</td>
<td>23</td>
<td>48</td>
</tr>
<tr>
<td>23</td>
<td>48</td>
<td>24</td>
<td>49</td>
</tr>
<tr>
<td>24</td>
<td>49</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>N % frutos atacados</td>
<td></td>
<td>N % frutos atacados</td>
<td></td>
</tr>
</tbody>
</table>

Observação: * 20 frutos por árvore
ARANHIÇO VERMELHO

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Rebento 1</th>
<th>Rebento 1</th>
<th>Rebento 2</th>
<th>Rebento 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gomo 1</td>
<td>Gomo 2</td>
<td>Gomo 1</td>
<td>Gomo 2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nº total de ovos/amôstra
INIMIGOS DA CULTURA – FICHAS DE REGISTO DE CAMPO

ARANHIÇO VERMELHO

Parcela: ___ Data: __________________

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Folha 1</th>
<th>Folha 2</th>
<th>Árvore nº</th>
<th>Folha 1</th>
<th>Folha 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nº% folhas ocupadas

Observação: * folha ocupada quando apresenta pelo menos uma forma móvel.
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

COCHONILHA DE SÃO JOSÉ

Parcela: ___ Data: ______________

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>26</td>
<td></td>
<td>51</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>27</td>
<td></td>
<td>52</td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>28</td>
<td></td>
<td>53</td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>29</td>
<td></td>
<td>54</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>30</td>
<td></td>
<td>55</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>31</td>
<td></td>
<td>56</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>32</td>
<td></td>
<td>57</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>33</td>
<td></td>
<td>58</td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>34</td>
<td></td>
<td>59</td>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>35</td>
<td></td>
<td>60</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>36</td>
<td></td>
<td>61</td>
<td></td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>37</td>
<td></td>
<td>62</td>
<td></td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>38</td>
<td></td>
<td>63</td>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>39</td>
<td></td>
<td>64</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>40</td>
<td></td>
<td>65</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>41</td>
<td></td>
<td>66</td>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>42</td>
<td></td>
<td>67</td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>43</td>
<td></td>
<td>68</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>44</td>
<td></td>
<td>69</td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>45</td>
<td></td>
<td>70</td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>46</td>
<td></td>
<td>71</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>47</td>
<td></td>
<td>72</td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>48</td>
<td></td>
<td>73</td>
<td></td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>49</td>
<td></td>
<td>74</td>
<td></td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>50</td>
<td></td>
<td>75</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Não de frutos ocupados

Observação: Fruto ocupado quando apresenta pelo menos uma forma viva.
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

PIOLHO CINZENTO (M)

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Orgão 1º</th>
<th>Orgão 2º</th>
<th>Árvore nº</th>
<th>Orgão 1º</th>
<th>Orgão 2º</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total de orgãos infestados

Observações:
- * orgão – inflorescências, infrutescências ou rebentos.
- (1) orgão infestado; (0) orgão não infestado; (P) presença de parasitismo.
- M – maçã
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

PIOLHO VERDE

Parcela: ___________________________ ___________________________ Data: __________________________

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Rebento 1</th>
<th>Rebento 2</th>
<th>Árvore nº</th>
<th>Rebento 1</th>
<th>Rebento 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total rebentos infestados

Observações: *rebento infestado quando apresenta pelo menos uma forma áptera do inseto; (1) – rebento infestado; (0) – rebento não infestado; (P) – presença de parasitismo.
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

PULGÃO LANÍGERO (M)

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Ramo 1</th>
<th>Ramo 2</th>
<th>Técnica das pancadas</th>
<th>Árvore nº</th>
<th>Ramo 1</th>
<th>Ramo 2</th>
<th>Técnica das pancadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observações:

- Ramo infestado: quando apresenta pelo menos uma forma aptera do inseto;
- (1) ramo infestado; (0) – ramo não infestado; (P) – presença de parasitismo.
- M – macieira

| % ramos infestados | Nº indivíduos capturados |
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

MOSCA DO MEDITERRÂNEO

Parcela: _______________________ ________________________________ ______ Data: _______________

<table>
<thead>
<tr>
<th>Arvore nº</th>
<th>Frutos</th>
<th>Frutos</th>
<th>Frutos</th>
<th>Frutos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nº/% de frutos picados

Observação:
(1) – fruto picado desde que tenha pelo menos uma perfuração; (0) – fruto não picado.
Em caso de dúvida observar com lupa e/ou cortar para determinar a profundidade da picada.
(Não contabilizar picadas velhas com desenvolvimento de fungos criptogâmicos);

- XV -
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

LAGARTAS MINEIRAS

Parcela: ____________________________ Data: ____________

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Folha 1</th>
<th></th>
<th>Folha 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº galerias/folha</td>
<td>Nº folhas com uma ou mais lagartas vivas</td>
<td>Nº galerias/folha</td>
<td>Nº folhas com uma ou mais lagartas vivas</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nº galerias/folha | Nº folhas com uma ou mais lagartas vivas
INIMIGOS DA CULTURA - FICHA DE REGISTO DE CAMPO

LAGARTAS MINEIRAS

Parcela: __________________________ Data: _______________

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Técnica das pancadas</th>
<th>Árvore nº</th>
<th>Técnica das pancadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ramo 1</td>
<td>Ramo 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Nº adultos capturados
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

<table>
<thead>
<tr>
<th>Parcele:</th>
<th>Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSILA (P)

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Orgão*</th>
<th>Técnica das pancadas</th>
<th>Árvore nº</th>
<th>Orgão*</th>
<th>Técnica das pancadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observações:
- *orgão*: gomos, rebentos e folhas
- P - Pereira
<table>
<thead>
<tr>
<th>Arvore nº</th>
<th>Rebento 1</th>
<th>Rebento 2</th>
<th>Arvore nº</th>
<th>Rebento 1</th>
<th>Rebento 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% rebentos atacados

Observações: P - Pereira
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAPTURAS EM ARMADILHAS

Parcela: _____________________________

<table>
<thead>
<tr>
<th>Data</th>
<th>Nº de capturas / armadilha</th>
<th>Média nº capturas armadilha/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

colocação das armadilhas

observações: *mudança de feromona.*
COCHONILHA DE S. JOSÉ

Parcela: __________________________

<table>
<thead>
<tr>
<th>Data</th>
<th>Nº de ninhas capturados</th>
<th>Nº de machos capturados</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cinta armadilha 1</td>
<td>Cinta armadilha 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armadilha 1</td>
<td>Armadilha 2</td>
<td></td>
</tr>
</tbody>
</table>

Colocação das armadilhas

observações: *mudança de feromona*
MOSCA DO MEDITERRÂNEO

Fichas de Registo de Capturas em Armadilhas

Parcela: ____________________________

<table>
<thead>
<tr>
<th>data</th>
<th>nº de capturas garrafas mosqueiras</th>
<th>média nº capturas armadilha/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colocação das armadilhas

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

observações: *mudança de feromona; duas garrafas mosqueiras tipo Dome com trimedelur*
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAPTURAS EM ARMADILHAS

LAGARTAS MINEIRAS

Parcela: ________________________________

<table>
<thead>
<tr>
<th>Data</th>
<th>Nº de capturas / armadilha</th>
<th>Média nº capturas armadilha/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Feromona</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Colocação das armadilhas</td>
</tr>
</tbody>
</table>

Observações: * mudança de feromona.
MOSCA DO MEDITERRÂNEO

| Parcela: _____________________________ | Data: ______________ |

<table>
<thead>
<tr>
<th>Fêmeas</th>
<th>Armadilha nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

% de fêmeas com ovos

PSILA (P)

| Parcela: _____________________________ | Data: ______________ |

<table>
<thead>
<tr>
<th>Fêmeas</th>
<th>Armadilha nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

% de fêmeas com ovos P – Pereira
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE CAMPO

BICHADO

<table>
<thead>
<tr>
<th>Árvore nº</th>
<th>Número de frutos bichados caídos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Parcela: __ **Data:** ____________

Nº total de frutos bichados caídos
INIMIGOS DA CULTURA - FICHAS DE REGISTO DE LABORATÓRIO

PEDRADO

Parcela: _____________________________

<table>
<thead>
<tr>
<th>Data</th>
<th>Nº ascósporos projectados</th>
<th>Nº ascos maduros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origem das figuras *

<table>
<thead>
<tr>
<th>Figuras</th>
<th>Origem</th>
<th>Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuno Reis</td>
<td>2006</td>
</tr>
<tr>
<td>2</td>
<td>Miriam Cavaco et al.</td>
<td>2006</td>
</tr>
<tr>
<td>3</td>
<td>António Coelho Oliveira</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>António Coelho Oliveira</td>
<td>2000</td>
</tr>
<tr>
<td>5</td>
<td>Helena Pinto</td>
<td>2004</td>
</tr>
<tr>
<td>6</td>
<td>Autores</td>
<td>2004</td>
</tr>
<tr>
<td>7</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>8</td>
<td>António Coelho Oliveira</td>
<td>1999</td>
</tr>
<tr>
<td>9</td>
<td>Autores</td>
<td>1999</td>
</tr>
<tr>
<td>10</td>
<td>Autores</td>
<td>1999</td>
</tr>
<tr>
<td>11</td>
<td>Autores</td>
<td>1999</td>
</tr>
<tr>
<td>12</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>13</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>14</td>
<td>Helena Pinto</td>
<td>1995</td>
</tr>
<tr>
<td>15</td>
<td>Helena Pinto</td>
<td>1995</td>
</tr>
<tr>
<td>16</td>
<td>Helena Pinto</td>
<td>1995</td>
</tr>
<tr>
<td>17</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>18</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>19</td>
<td>Helena Pinto</td>
<td>1998</td>
</tr>
<tr>
<td>20</td>
<td>Helena Pinto</td>
<td>2001</td>
</tr>
<tr>
<td>21</td>
<td>Helena Pinto</td>
<td>2001</td>
</tr>
<tr>
<td>22</td>
<td>Helena Pinto</td>
<td>2001</td>
</tr>
<tr>
<td>23</td>
<td>Helena Pinto</td>
<td>2001</td>
</tr>
<tr>
<td>24</td>
<td>António Coelho Oliveira</td>
<td>1998</td>
</tr>
<tr>
<td>25</td>
<td>Autores</td>
<td>2001</td>
</tr>
<tr>
<td>26</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>27</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>28</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>29</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>30</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>31</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>32</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>33</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>34</td>
<td>Autores</td>
<td>2000</td>
</tr>
<tr>
<td>Figuras</td>
<td>Origem</td>
<td>Ano</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>35</td>
<td>António Coelho Oliveira</td>
<td>1998</td>
</tr>
<tr>
<td>36</td>
<td>António Coelho Oliveira</td>
<td>1998</td>
</tr>
<tr>
<td>37</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>39</td>
<td>ACTA</td>
<td>1977</td>
</tr>
<tr>
<td>40</td>
<td>Anabela Maurício</td>
<td>2006</td>
</tr>
<tr>
<td>41</td>
<td>António Coelho Oliveira</td>
<td>2000</td>
</tr>
<tr>
<td>42</td>
<td>António Coelho Oliveira</td>
<td>2000</td>
</tr>
<tr>
<td>43</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>44</td>
<td>Goidânich</td>
<td>1960</td>
</tr>
<tr>
<td>45</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>DPC/DRAALG</td>
<td>2002</td>
</tr>
<tr>
<td>47</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>48</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>49</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>50</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>51</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>53</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Helena Pinto</td>
<td>2000</td>
</tr>
<tr>
<td>55</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>http://www.sito.regione.campania.it</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>López et al.</td>
<td>1992</td>
</tr>
<tr>
<td>59</td>
<td>Bayer</td>
<td>2000</td>
</tr>
<tr>
<td>60</td>
<td>López et al.</td>
<td>1992</td>
</tr>
<tr>
<td>61</td>
<td>Felisbela Mendes</td>
<td>2006</td>
</tr>
<tr>
<td>62</td>
<td>López et al.</td>
<td>1992</td>
</tr>
<tr>
<td>63</td>
<td>António Coelho Oliveira</td>
<td>1993</td>
</tr>
<tr>
<td>64</td>
<td>Autores</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Autores</td>
<td>1993</td>
</tr>
<tr>
<td>66</td>
<td>António Coelho Oliveira</td>
<td>1993</td>
</tr>
<tr>
<td>67</td>
<td>Xavier da Cruz</td>
<td>1973</td>
</tr>
<tr>
<td>Figuras</td>
<td>Origem</td>
<td>Ano</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>69</td>
<td>Grove</td>
<td>1971</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>71</td>
<td>António Coelho Oliveira</td>
<td>2000</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>2000</td>
</tr>
</tbody>
</table>

As figuras que compõe a capa são originais da Estação de Fruticultura Vieira de Natividade, Oliveira e DGPC.
A Direcção-Geral de Protecção das Culturas e a Direcção Regional de Agricultura da Beira Litoral agradecem muito reconhecidamente à Dr.ª Maria Lisete Gonçalves, pelo seu valioso contributo na elaboração deste documento e aos técnicos António Coelho de Oliveira (DRABL), Anabela Maurício (DPC/DRARO), Celestino Soares (DPC/DRAAlg) e Professor Fernando Garcia-Marí (Universidade Politécnica de Valencia) pela cedência de fotografias.